Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Electrical Filter Stage for the ELPI

2002-03-04
2002-01-0055
Electrical low pressure impactor ELPI was modified to measure particles below 30 nanometers in aerodynamic diameter. This was accomplished by adding a filter stage to collect and measure nanoparticles. The charging unit of the instrument was modified to increase the charging efficiency of the smallest, nanometer sized, particles. The modified charging unit was calibrated and the new construction of the ELPI was tested in laboratory and in vehicle dynamometer test cell. Measurements performed in the engine test cell showed that modifications improve the size range and measurement capability of the ELPI for engine emissions.
Technical Paper

Effective Density of Diesel Exhaust Particles as a Function of Size

2002-03-04
2002-01-0056
New method to define the particle effective density as a function of particle size has been applied to diesel vehicle exhaust particles. The results show that, the effective density of agglomerated diesel particles decreases as a function of particle size. The density of primary particles varies from 1.1 to 1.2 g/cm3. Also the effect of used dilution method and fuel type on particle density was studied. The dilution effect seems to have stronger effect on particle effective density and structure than the fuel type.
Technical Paper

Real Time Measurements of Diesel Particle Size Distribution with an Electrical Low Pressure Impactor

1998-02-23
980410
Number concentration of particles emitted by combustion engines has recently attracted attention, due to the fact that particles of the size range found in tail pipe emissions are suspected of being hazardous to human health. This paper describes the application of an Electrical Low Pressure Impactor (ELPI) to the measurement of number concentrations of diesel exhaust particles. The size distribution of particles as fine as 30 nm is determined using the aerodynamic diameter as the characteristic dimension. Results were obtained on both the engine and chassis dynamometer, in real-time, for steady state and transient tests. Swedish Environmental Class 1 diesel fuel was used, having a sulfur content of less than 10 ppm wt. A scheme for the calculation of particle losses in the sampling system was developed, showing high penetration of particles under the conditions examined.
X