Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Chemical and Physical Characteristics of Organic Particulate Matter from Exhaust After-Treatment System of Euro 6 Diesel Engine Operating at Full Load

2019-09-09
2019-24-0053
The current legislation does not take into account the limitation of sub 23 nm particles from engine. Nevertheless, the Common Rail Diesel engine emits a large number of nanoparticle, solid and volatiles, that are very dangerous for human health. In this contest, the challenge of the “dieper EU project” is to apply advanced technologies for exhaust after-treatment to existing diesel engines and to optimize the characteristics of a new generation of engines with regards to emissions, fuel consumption and drivability. Aim of the present paper is to provide useful information for the development of the after-treatment system that will have to fulfill Euro6 further steps. In order to characterize the chemical and physical nature of Particulate Matter emitted from Euro 6b Medium Duty diesel engine, the pollutants were collected and analyzed: from engine-out, downstream of the particulate filter (DPF), and at the exit of a selective catalytic reactor (SCR).
Journal Article

Characterization of Different Types of Diesel (EGR Cooler) Soot Samples

2015-04-14
2015-01-1690
Soot fouling on exhaust gas recirculation coolers (EGRc) decreases thermal efficiency, implying the unfulfillment of NOx standards, and increases the pressure drop producing the malfunctioning of this device. The characterization of soot is of great interest since soot physico-chemical properties may have a direct influence on the degree of malfunctioning of EGRc. Thus, the combined analysis and interpretation of all the soot physico-chemical features are essential to correctly interpret its behavior when soot is deposited on the EGRc walls. In this context, the aim of this study is the characterization of five different types of diesel soot which were collected from several high pressure EGRc, working at different conditions (engine bench and vehicle). Each soot sample was characterized by means of elemental analysis, specific surface area (BET method), FESEM, FTIR, TGA, GC-MS and UV-visible spectroscopy.
Technical Paper

Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine

2014-04-01
2014-01-1613
Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Technical Paper

Chemical and Spectroscopic Characterization of SOF and Soot from a Euro-4 Diesel Engine Fueled by Model Fuels

2011-08-30
2011-01-2098
This work regards the study of the effect of the fuel properties on the diesel engine emissions of particulate separated in soluble organic fraction (SOF) and soot. A Euro-4 engine was used operating at two engine conditions: 1500 rpm speed − 8% of maximum load and 2300 rpm − 13%. Model hydrocarbon fuels containing 100% of n-alkanes and iso-alkanes were used for studying the effect of cetane number. The effect of fuel composition on soot and SOF emissions was studied at a fixed cetane number (52) by using six fuels formulated with 90 vol% of model alkanes and iso-alkanes and 10 vol% of different components as alkylbenzenes, naphthenes (decaline), diaromatics (methylnaphthalene), fatty acid methyl esters (FAME) and highly paraffinic refinery streams (Fischer-Tropsch GtL and high-pressure Hydro cracking).
X