Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Reversibility of Sulfur Effects on Emissions of California Low Emission Vehicles

1999-05-03
1999-01-1544
The Coordinating Research Council conducted a program to measure the reversibility of fuel sulfur effects on emissions from California Low Emission Vehicles (LEVs). Six LEV models were tested using two non-oxygenated conventional Federal fuels with 30 and 630 ppm sulfur. The following emission test sequence was used: 30 ppm fuel to establish a baseline, 630 ppm fuel, and return to 30 ppm fuel. A series of emission tests were run after return to 30 ppm to ensure that emissions had stabilized. The effect of the driving cycle on reversibility was evaluated by using both the LA4 and US06 driving cycles for mileage accumulation between emission tests after return to 30-ppm sulfur fuel. The reversibility of sulfur effects was dependent on the vehicle, driving cycle, and the pollutant. For the test fleet as a whole most but not all of the sulfur effects were reversible.
Technical Paper

Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles

1998-10-19
982726
The Coordinating Research Council conducted a program to measure the effect of fuel sulfur on emissions from California Low Emission Vehicles (LEVs). Twelve vehicles, two each from six production LEV models, were tested using low mileage as-received catalysts and catalysts aged to 100k by each vehicle manufacturer using “rapid-aging” procedures. There were seven test fuels: five conventional fuels with sulfur ranging from 30 to 630 ppm, and two California reformulated gasoline (RFG) with sulfur of 30 and 150 ppm. Reducing fuel sulfur produced statistically significant reductions in LEV fleet emissions of NMHC, NOx and CO. Comparing conventional fuel and California RFG at the same sulfur level: California RFG had lower NMHC and NOx emissions and higher CO emissions, but only some NMHC and NOx differences and none of the CO differences between conventional and California RFG were statistically significant.
Technical Paper

CRC Speciated Hydrocarbon Emissions Analysis Round Robin Test Program

1995-02-01
950780
Recent changes in regulatory practices have brought about a need for speciated analysis of the volatile organic components of vehicle exhaust. The purpose of this study was to allow interested laboratories to participate in a Round Robin so that each could assess its speciation methodologies for hydrocarbons, alcohols, and carbonyls. The results from analysis of the liquid samples (methanol, ethanol, and DNPH-derivatives of carbonyls) were reported in SAE 941944. For gaseous hydrocarbon samples, two gasolines from the Auto/Oil Air Quality Improvement Research Program (AQIRP) were used to prepare compressed gas cylinders of “synthetic exhaust.” These samples were also doped with typical light hydrocarbon combustion components, marker compounds, and MTBE (in one of the two sets of samples). The cylinders were circulated to 16 laboratories, which included automotive and petroleum companies, contract laboratories, and regulatory agencies.
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Technical Paper

Improved Emissions Speciation Methodology for Phase II of the Auto/Oil Air Quality Improvement Research Program - Hydrocarbons and Oxygenates

1993-03-01
930142
Analytical procedures for the speciation of hydrocarbons and oxygenates (ethers, aldehydes, ketones and alcohols) in vehicle evaporative and tailpipe exhaust emissions have been improved for Phase II studies of the Auto/Oil Air Quality Improvement Research Program (AQIRP). One gas chromatograph (GC) was used for measurement of C1-C4 species and a second GC for C4-C12 species. Detection limits for this technique are 0.005 ppm C or 0.1 mg/mile exhaust emission level at a chromatographic signal-to-noise ratio of 3/1, a ten-fold improvement over the Phase I technique. The Phase I library was modified to include additional species for a total of 154 species. A 23-component gas standard was used to establish a calibration scale for automated computer identification of species. This method identifies 95±3% of the total hydrocarbon mass measured by GC for a typical exhaust sample. Solid adsorbent cartridges or impingers were used to collect aldehydes and ketones.
X