Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Development of Partial Filter Technology for HDD Retrofit

2006-04-03
2006-01-0213
Diesel oxidation catalyst and particulate filter technologies are well established and their applications are well known. However, there are certain limitations with both technologies due to their inherent technical characteristics. Both technologies get 75-90% reduction of HC and CO. A typical oxidation catalyst can be applied to almost any heavy duty diesel application and achieve 20 to 30% reduction in PM mass but no significant reduction in the number of PM particles. On the other hand, diesel particulate filters are very effective at removing >90% of the particles by mass and >99% by number. Unfortunately, passive DPF technology cannot be applied to all applications since the filter regeneration is limited by engine out NOx to PM ratio as well as exhaust temperature. For this reason, particulate filters can not universally be applied to older “dirtier” engines with high PM emissions.
Technical Paper

NOx and PM Reduction Using Combined SCR and DPF Technology in Heavy Duty Diesel Applications

2005-11-01
2005-01-3548
The application of oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions from heavy duty diesel engines has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is cost effective and durable. The application of an effective NOx reduction technology in heavy duty diesel applications is more complicated since there are no passive NOx reduction technologies that can be fit onto HDD vehicles. However, Selective Catalytic Reduction (SCR) systems using Urea injection to achieve NOx reduction have become the technology of choice in Europe and have been applied to achieve Euro IV emissions levels on new HDD vehicles. In addition, retrofit SCR emission control systems have also been developed that can provide high NOx reduction when applied on existing HDD vehicles.
Technical Paper

Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit

2005-04-11
2005-01-1862
The retrofitting of diesel engines with oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is a cost effective means for states to effectively meet pollution reduction goals. One of the reasons that these technologies are so widely applied is because they can be sized and fitted based on easily measurable vehicle parameters and published engine emission information. These devices generally work passively with basic temperature and back pressure monitoring devices being used to alert the operator to upset conditions. The application of an effective NOx reduction technology in similar retrofit installation, is more complicated. There are no passive NOx reduction technologies that can be retrofit onto HDD vehicles.
Technical Paper

Investigations into Lubricant Blocking of Diesel Particulate Filters

2004-10-25
2004-01-3013
Operational Diesel Particulate Filter (DPF) technology traps and oxidizes soot particulate, lowering particulate emissions. Additionally they trap other non combustible material which is deposited as ash within the filter. The trapping of this material leads to increased backpressure on the engine, giving an increase in fuel consumption, and requires periodic servicing to remove. This work demonstrates the emission effects of this increase in backpressure and develops a method of realistically accelerating this ash deposition mechanism yielding a bench test for the study of this phenomenon.
Technical Paper

High Performance Diesel Catalysts for Europe Beyond 1996

1995-02-01
950750
The catalytic converter on a European diesel car must operate under extremely variable conditions, ranging from very low temperature during city-driving to high temperature during Autobahn-driving. Therefore, the development of new catalyst technology for European applications requires simultaneous achievement of properties that have long been considered incompatible. In this paper, it is shown how extremely good low temperature activity for CO and hydrocarbons (and VOF), negligible storage of sulfates, and very good thermal durability were obtained simultaneously with an appreciable reduction of NOx. Through the systematic analysis of basic catalytic phenomena, under conditions of relevance to the real-world application, it was possible to control the interaction between support, stabilizers and promoters with the precious metal package in an efficient way. The large-scale manufacturing aspects formed an important part of the development program.
X