Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Design of the Body and Structure for a Practical and Highly Efficient Solar-Electric Sports Car

2022-05-13
2022-01-5038
The design of the exterior body shape and structure of a solar-electric sports car which competed in the 2019 Bridgestone World Solar Challenge (BWSC) Cruiser Class is explored. A low-drag and low-lift aerodynamic shape with a coefficient of lift near zero and drag area of 0.16 m2 is developed as a primary focus around the constraints of a solar array, occupant space, and aesthetics. The maximally sized 5 m2 rearward tilted solar array capable of generating an expected event average power of 885 W influences the size and shape of the roof. The space for which two occupants are seated in the vehicle is developed to achieve a reclined occupant position that minimizes the vehicle frontal area. A carbon fiber-reinforced polymer (CFRP) and foam composite sandwich monocoque make up the structure of the vehicle at a mass of 59.53 kg. Factors of practicality and their compromises are also explored.
Technical Paper

Green Racing; Solar and FSAE

2011-10-06
2011-28-0023
Green racing technologies are described with a focus on two categories of sustainable racing; solar racing, including an overview of the World Solar Challenge (WSC) held in Australia, and Formula SAE-E (Society of Automotive Engineers-Electric). Both types of cars utilise sustainably generated electricity, the former uses solar arrays integrated into the vehicle body and the latter electricity generated from a renewable energy park and stored onboard in lithium polymer cells. The design considerations of both vehicles are contrasted with a focus on energy usage minimisation. The Aurora team (which has broken many records, including winning the World Solar Challenge across Australia) is used to illustrate the importance of minimizing the power requirements by having a low aerodynamic drag, frontal area, a highly efficient powertrain and low rolling resistance. To illustrate the technology behind FSAE Electric the R10E car from RMIT is described.
X