Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance of Slotted Metallic Membranes as Particulate Filters

2014-10-13
2014-01-2807
Stringent IC engine PM emission regulation requires development of future filter substrate materials to achieve high filtration efficiency, low filter pressure drop, low cost and highly durable solutions. Monolithic wall flow filters perform well as they achieve high filtration efficiency due to the formation of the PM cake structure while maintaining low substrate face velocities due to the large filtration area. Within the process industry, Micropore™ slotted metallic membrane filters offer both large surface areas and low filter pressure drops while maintaining the durability of metal substrates. The pore structure and pore arrangement can be readily tailored to suit specific applications. This paper characterizes a 300 μm thickness Micropore™ metallic membrane with slots of 10 μm by 400 μm in size in the context of application as an engine exhaust particulate filter. The investigation was based on single layer of Micropore™ slotted metallic membrane with size of 52 mm in diameter.
Technical Paper

Operating Characteristics of a Homogeneous Charge Compression Ignition Engine with Cam Profile Switching - Simulation Study

2003-05-19
2003-01-1859
A single zone combustion model based on a chemical kinetic solver has been combined with a one-dimension thermo/gas dynamic engine simulation code to study the operating characteristics of a V6 engine in which Homogeneous Charge Compression Ignition (HCCI) operation (also referred to as ‘Controlled Auto-ignition” CAI) is enabled by a cam profile switching (CPS) system with negative valve overlap. An operational window within which HCCI combustion is possible has been identified and the limit of HCCI operating region for varied valve lift possibilities is explored. The mechanisms and potential fuel economy improvements within the HCCI envelope are studied and modelled results compared against data from similar engines. It is shown that for the best fuel economy the valve timing strategy needs to be selected very carefully, despite the engine's capability to operate at a range of valve timing combinations.
X