Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Volume and Pressure Considerations in Human Body Modeling

2020-03-31
2019-22-0020
The initial presence and dynamic formation of internal voids in human body models have been subjects of discussion within the human body modeling community. The relevant physics of the human body are described and the importance of capturing this physics for modeling of internal organ interactions is demonstrated. Basic modeling concepts are discussed along with a proposal of simulation setups designed to verify model behavior in terms of volume and pressure between internal organs.
Technical Paper

Improvements in Simulations of Aortic Loading by Filling in Voids of the Global Human Body Model

2020-03-31
2019-22-0021
Internal organ injuries of the chest are one of the leading causes of deaths in motor vehicle crashes. The issue of initial presence and dynamic formation of voids around the heart and aorta is addressed to improve kinematics, force interaction and injury risk assessment of these organs of the Global Human Body Model. Steps to fill the voids are presented.
Technical Paper

Driver Restraint System Optimization for Vehicle Frontal Impact

2015-09-22
2015-36-0263
In 2010, the UN General Assembly proclaimed the period 2011-2020 as the Decade of Action for Road Safety, with a goal to stabilize and then reduce the forecast level of road traffic fatalities around the world. Road traffic accidents are the 8th cause of death in Brazil, according to World Health Rankings. There are few studies around the world with respect to cost due to traffic accidents, however a study performed in 2011 estimates that were spent R$ 44.6 billion in Brazil. So, the recent Brazilian regulations updates have enforced the automakers to develop vehicles safer to passengers and pedestrians. These regulations focus on prevent, reduce or minimize the traumas and injuries caused by different types of vehicular accidents. The present work was developed to optimize the driver restraint system, while focusing on minimizing the trauma during a vehicle frontal impact.
Technical Paper

Vehicle Restraint System Optimization for Frontal Impact

2013-10-07
2013-36-0473
The Brazilian Automotive regulations that are aimed towards the safety of drivers, passengers and pedestrians have gone through recent changes to prevent and/or minimize injury and trauma from different types of accidents. Until now, National Traffic Council (CONTRAN) Resolution n° 14/98 required vehicles to only have safety belts for an occupant restraint system, and frontal airbags were not required. Since the recent CONTRAN n° 311/09 Resolution requires mandatory frontal airbags, the occupant restraint system must be tuned due to the interaction with different components that may make up the system, like safety belts with pretensioners and seatbelt load limiting devices. The present study was developed to optimize the restraint system of a current vehicle in production, while focusing on minimizing the vehicle complexity. The optimization tool helped to develop a robust restraint system for the frontal passenger during a frontal impact [1].
Technical Paper

Development of a Preliminary 6-Year-Old Child FE Model for Crashworthiness Assessment

2012-10-02
2012-36-0187
In recent years, a large number of studies and researches have been developed focusing on occupant protection during vehicular collisions. In this context, it is growing the interest on the monitoring of children's kinematics and injuries mechanisms due to automotive crashes. Further, Euro NCAP intends to introduce dynamic tests for older children introducing Q6 in the new protocols by 2015. Focusing on children safety and in those new requirements it was developed a computational dummy using finite elements method. The 6-years-old dummy developed provides numerical simulation results which support the assessments of the child's dynamic in a vehicular accident. Since the numerical model of the 6-year-old child is under development at the moment, a preliminary study of a numerical child dummy was performed, based on the hybrid III midsize adult male dummy which was scaled and balanced to reach the 6-year-old dummy dimensions, masses and inertias.
Technical Paper

A Computational Study to Determine the Severity of Injuries in the Driver of Passenger Car and Sport Utility Vehicle Due to Rollover Accidents

2011-10-04
2011-36-0384
Every year a higher number of consumers have been critically injured in vehicular accidents, which translates into hundreds of millions of dollars of unnecessary health care cost. Rollover crashes continue to be a growing source of motor vehicle injuries and deaths in the world. Consequently, there has been considerable interest in identifying relationships between rollover severity and injury severity. The purpose of this work is to analyze the probability of injuries in the head and neck regions of drivers due to rollover accidents. Traumas in these regions are responsible for the more severe injuries in the vehicular accidents. Furthermore this study compares the severity of injuries between passenger cars and sport utility vehicles (SUV).
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

Probability of Occupant's Injuries due to Rollover Crashes - Computational Methods

2009-10-06
2009-36-0261
Rollover crashes are responsible for more than 20% of total passengers deaths in vehicular accidents. Every year a higher number of consumers have been critically injured in rollovers, which translates into hundreds of millions of dollars of unnecessary health care cost. Efforts to reduce the incidence of death and catastrophic injuries associated with rollover crashes have increased the importance of both, prototype testing and computational simulations. Automotive industry and individual researchers have performed numerous rollover tests using instrumented anthropomorphic test devices (ATD), with the objective of predicting possible head, neck, and cervical spine injuries. Some of these works measured accelerations, forces and moments on head, neck and cervical spines, which can cause several other injuries according to medical traumas databases.
X