Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Technical Paper

Development of Next-Generation Continuously Variable Transmission Fluid Technology

2012-09-10
2012-01-1670
Public concern and increasing regulations surrounding environmental issues, such as CO₂ emissions, are making it important for car makers to improve the fuel efficiency of the vehicles they manufacture and sell. A wide array of transmission technologies are being employed towards this end including, but not limited to, 6, 7, and 8 speeds stepped automatic transmissions, dual clutch transmissions (DCT) and continuously variable transmissions (CVT). The number of passenger cars equipped with CVTs has been increasing and push belt CVT types (b-CVT) are widely used. Since engine torque is transferred to the wheels via friction between the steel elements of the belt and the steel pulleys in a b-CVT, having a high metal on metal friction is required. As the CVT fluid is a key part of the CVT system, using a special CVT Fluid (CVTF) is critical in order to provide and maintain the required high metal-on-metal friction performance.
Journal Article

Fuel Economy Durability - A Concept to be Considered for Motorcycle Oils

2011-11-08
2011-32-0545
Motorcycle manufacturers have recognized that highly friction modified passenger car oils can be deleterious to clutch performance, leading to clutch slippage. To address this issue, a JASO specification for four-stroke motorcycle oils was developed in 1999, categorizing oils into high friction oils termed JASO MA and low friction oils termed JASO MB. The high friction oils were preferred for most motorcycles where the engine oil also lubricates the clutch and gears. New motorcycle transmission technologies have increased the number of dry clutch applications which has led to an increased demand for JASO MB oils to improve fuel efficiency. While JASO MB oils contain friction modifiers to improve initial fuel economy, the motorcycle specifications have not addressed the fuel economy durability of motorcycle oils.
Journal Article

Improving Fuel Efficiency of Motorcycle Oils

2013-10-15
2013-32-9063
As the motorcycle market grows, the fuel efficiency of motorcycle oils is becoming an important issue due to concerns over the conservation of natural resources and the protection of the environment. Fuel efficient engine oils have been developed for passenger cars by moving to lower viscosity grades and formulating the additive package to reduce friction. Motorcycle oils, however, which operate in much higher temperature regimes, must also lubricate the transmission and the clutch, and provide gear protection. This makes their requirements fundamentally very different from passenger car oils. Developing fuel efficient motorcycle oils, therefore, can be a difficult challenge. Formulating to reduce friction may cause clutch slippage and reducing the viscosity grade in motorcycles must be done carefully due to the need for gear protection.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
X