Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Study of the Variable Valve Timing Effects on Combustion Quality and Fuel Consumption of an Internal Combustion Engine

2020-01-13
2019-36-0117
The need for a constant evolution of internal combustion engines has encouraged the emergence of new alternatives for the minimization of pollutant emissions, fuel consumption and an increase of the overall performance. The coming years will be marked by the launch of increasingly efficient engines, given the current importance of sustainability in the means of transport. Despite the growing electrification of global mobility, research indicates that the ICE will continue to be the main source of automotive energy in the coming years and, therefore, the study of strategies aimed at optimizing its performance is and will continue to be relevant. In this sense, the purpose of this work is to study the effects of variable valve timing on the experimental calibration of an internal combustion engine intended for research.
Technical Paper

Three-Dimensional Model Obtained from Reverse Engineering for Analysis of Combustion in an Engine Adapted with Pre-Chamber

2017-11-07
2017-36-0346
This paper describes a reverse engineering methodology to obtain a three-dimensional (3D) model of an internal geometry of an engine adapted with a torch ignition system. The reverse engineering methodology began with the measurement of the internal geometry from the cylinder head using silicon. Then, the obtained silicone molds were analyzed in a 3D scanner obtaining a cloud of points which was then treated in a commercial CAD software in order to generate de 3D computer model. The virtual geometry obtained was used to run CFD simulations with the torch ignition system. In order to increase the reliability of the results, a comparison between the pressures in the cylinder obtained numerically and experimentally were made. The same procedure was made in the pre-chamber, thus validating the model.
Technical Paper

High Efficiency Flex-Fuel Engines and the End of the 70% Paradigm

2017-11-07
2017-36-0162
Recently many government Acts (Inova Energia, Inovar-Auto, RenovaBio) [1, 2, 3] have been implemented in order to expand the use of biofuels in Brazil. Besides the fulfillment until 2030 of the commitment assumed at the COP21[4] to reduce in 43% the gas emission contributing to the greenhouse effect, the expansion of the use of biofuels is important to assure regularity in the supply of fuels to the automotive sector in the next 15 years. In this context, it is worth mentioning a special characteristic of the Flex-Fuel engines that equip the majority of the automobiles in Brazil since their launching in 2003. The maximum compression ratio of these engines depends on the knocking characteristics of the gasoline, but usually an intermediate value, nearer to the ideal value for gasoline, is a compromise.
Technical Paper

Design and Combustion Characteristics of an Ethanol Homogeneous Charge Torch Ignition System for a Single-cylinder Optical Engine

2016-10-25
2016-36-0130
The trends in the development of spark ignition engines leads to the adoption of lean mixtures in the combustion chamber. Torch ignition systems have potential to reduce simultaneously the NOx and CO emissions, while keeping the fuel conversion efficiency at a high level. This study aims to design and analyze a torch ignition system running with ethanol on lean homogeneous charge, adapted to an Otto cycle single-cylinder engine with optical visualization. The main objective is to achieve combustion stability under lean burn operation and to expand the flammability limit for increasing engine efficiency by means of redesigning the ignition system adapting a pre-chamber to the main combustion chamber. Experiments were conducted at constant speed (1000 rpm) using ethanol (E100) as fuel, for a wide range of injection, ignition and mixture formation parameters. Specific fuel consumption and combustion stability were evaluated at each excess air ratio.
Technical Paper

Stratified Torch Ignition Engine: Combustion Analysis

2016-10-25
2016-36-0380
The Stratified Torch Ignition (STI) engine is capable of operating with lean mixture and low cyclic variability. These characteristic significantly decreases fuel consumption and emission levels. In the STI engine the combustion starts at a pre-combustion chamber where a stoichiometric mixture is ignited by an electrical spark. Pressure increase in the pre-combustion chamber push the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames endowed with high thermal and kinetic energy assures a fast and stable combustion of a lean mixture formed at the main chamber. A STI prototype were built and tested. The main combustion parameters were obtained from the in-cylinder pressure measured during the experiments. A combustion analysis is carried out to explain the significant improvement of the STI engine in regard to the baseline engine which was used as workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: NOx Emissions

2016-10-25
2016-36-0387
The emission of nitric oxide (NOx) is the most difficult to limit among numerous harmful exhaust gas components. The NOX emission of internal combustion engines is mainly NO, but it will be oxidized into NO2 quickly after entering the air. NO is formed inside the combustion chamber in post-flame combustion by the oxidation of nitrogen from the air in conditions that are dependent on the chemical composition of the mixture, temperature and pressure. The correlation between NO emissions and temperature in the combustion chamber is a result of the endothermic nature of these reactions and can be described by extended Zeldovich Mechanism. The stratified torch ignition engine is able to run with lean mixture and low cyclic variability. Due to lean operation, the in-cylinder temperature of the STI engine is significantly lower than the conventional spark ignited one. This fact lead to a substantial reduction in NOx specific emission.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Stratified Torch Ignition Engine: Raw Emissions

2016-10-25
2016-36-0477
A global effort has been made by the scientific community to promote significant reduction in vehicle engine out-emission. To comply with this goal a stratified torch ignition (STI) engine is built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. The engine out-emissions of CO, HC and CO2 of the STI engine are presented, analyzed and compared with the baseline engine. The STI engine showed a significant decrease in the specific emissions of CO and CO2.
X