Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
Technical Paper

Design Considerations for a Compatibility Test Procedure

2002-03-04
2002-01-1022
A major focus of the National Highway Traffic Safety Administration's (NHTSA) vehicle compatibility and aggressivity research program is the development of a laboratory test procedure to evaluate compatibility. This paper is written to explain the associated goals, issues, and design considerations and to review the preliminary results from this ongoing research program. One of NHTSA's activities supporting the development of a test procedure involves investigating the use of an mobile deformable barrier (MDB) into vehicle test to evaluate both the self-protection (crashworthiness) and the partner-protection (compatibility) of the subject vehicle. For this development, the MDB is intended to represent the median or expected crash partner. This representiveness includes such vehicle characteristics as weight, size, and frontal stiffness. This paper presents distributions of vehicle measurements based on 1996 fleet registration data.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

ANALYSIS OF OCCUPANT PROTECTION PROVIDED TO 50TH PERCENTILE MALE DUMMIES SITTING MID-TRACK AND 5TH PERCENTILE FEMALE DUMMIES SITTING FULL-FORWARD IN CRASH TESTS OF PAIRED VEHICLES WITH REDESIGNED AIR BAG SYSTEMS

2001-06-04
2001-06-0015
Historically, the United States Federal Motor Vehicle Safety Standard No. 208 (FMVSS No. 208) has used 50th percentile male dummies seated in the mid-track position to evaluate occupant protection in frontal crashes. As a result of field investigations of air bag-related fatalities and serious injuries involving short-stature female drivers, more recent research has focused on improving crash protection using the 5th percentile female dummy in a full-forward seat position. A series of 48 kmph (30 mph) full frontal rigid barrier crash tests were conducted with belted and unbelted 5th percentile female dummies in the full-forward seat position of Model Year (MY) 1999 vehicles with redesigned air bags (certified to the FMVSS No. 208 sled test). Tests were also conducted using identical vehicles with the 50th percentile male dummies seated mid-track.
Technical Paper

NHTSA's Compatibility Research Program Update

2001-03-05
2001-01-1167
This paper provides an update of NHTSA's research activities in vehicle compatibility and aggressivity. This paper pres ents new ly initiated efforts underw ay to develop test assessment meth odologie s intende d to evalua te vehic le compatibility. The rigid barrier load cell data collected from 18 years of the agency's New Car Assessment Program testing are reviewed to e valuate potentia l test measures that may be used to evaluate a vehic le's compatibility in vehicle-to-vehicle crashes. These parameters are then evaluated using a series of vehicle-to-vehic le and m oving deformable ba rrier (MDB)-to -veh icle tests. In these tests, the face of the MDB has been instrumented with an array of load cells to compute test measures. This study is part of NHTSA's ongoing compatib ility research program and is being coordinated with the IHRA compatibility group.
Technical Paper

NHTSA’s Vehicle Compatibility Research Program

1999-03-01
1999-01-0071
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the crash compatibility of passenger cars, light trucks and vans (LTV’s) in vehicle-to-vehicle collisions. NHTSA has conducted a series of eight full-scale vehicle-to-vehicle crash tests to evaluate vehicle compatibility issues. Tests were conducted using four bullet vehicles representing different vehicle classes striking a mid-size sedan in both side and oblique frontal crash configurations. The test results show a good correlation between vehicle aggressivity metrics and injury parameters measured in the struck car for the frontal offset tests, but not for the side impact tests.
X