Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Influence of AHSS Part Geometric Features on Crash Behavior

2006-04-03
2006-01-1588
Advanced High Strength Steels (AHSS) are replacing conventional high strength low-alloyed steels (HSLA) in crash sensitive body in white (BIW) applications. Along with innovative product design, they offer superior crash energy management and vehicle weight reduction potential. However, Controlling springback and dimensional accuracy is one of the major concerns in manufacturing AHSS parts. One of the most effective springback control techniques is to design a part with added geometric features such as side stiffening beads, state beads, top hat beads, and embossments, etc. at the product design stage. On the other hand, product design communities tend to believe that the above listed features may result in premature crash initiation in the part. This paper uses an innovative and experimentally verified finite element method (FEM) for crash sensitive component design and optimization.
Technical Paper

On the Formability of Automotive TRIP Steels

2003-03-03
2003-01-0521
The issue of cost and weight reduction at optimum car crash safety is a driving force behind the growing use of advanced high strength steels, particularly in Europe and Japan. Recent developments in the availability of high strength steel (HSS) sheets in North America; in particular transformation induced plasticity (TRIP) steels, offer an attractive option to the automotive designer for weight reduction and improved safety performance. For example, the use of TRIP steels, as opposed to more conventional steel products such as high strength low alloy (HSLA), in some applications may result in up to 40% part weight reduction at similar vehicle crash performance. When the excellent formability of TRIP steel is considered at product design stage, it may also lead to reducing part count and tooling cost. In this paper the formability of TRIP steels of various gauges is assessed. Experimental forming limit curves (FLCs) are determined for T600 grade.
Technical Paper

An Experimental Study of Springback for Dual Phase Steel and Conventional High Strength Steel

2001-10-16
2001-01-3106
An experimental study of springback was conducted for a hat channel section with varying cross sections and controlled gap between punch and die. The channel section was formed in a single step forming process with upper pressure pad. DP590 steel was compared to a group of high strength steels (HSS), e.g. HSLA270, 340 and 420. In addition, sidewall curl phenomenon was studied utilizing bending under tension test. This paper describes methodology of experiment and discusses springback related results. It also offers recommendations that can be applied to die-punch gap control or material substitution situations. The results of this investigation can be used to verify accuracy of springback predictions in finite element analysis (FEA).
Technical Paper

On Formability Assessment of the Automotive Dual Phase Steels

2001-10-16
2001-01-3075
The issue of improving car crash energy management and maintaining cost and weight reduction are the driving forces behind the growing use of advanced high strength steels, particularly in Europe and Japan. Recent developments in the manufacture of high strength steel (HSS) sheets in North America, in particular Dual Phase (DP) steels, offers an attractive option to the automotive designer for weight reduction and improved safety performance. For example, the use of dual phase steels, as opposed to more conventional steel products such as high strength low alloys (HSLA), in some cases may result in up to 40% part weight reduction at similar vehicle crash performance. In this paper the formability of commercially produced hot-dipped dual phase steels of various gages and grades is assessed. Forming Limit Curves (FLCs) are determined for commercial DP590 and DP780 grades. These FLCs were compared to the conventional ASM FLCs calculated from n-value and sheet thickness.
Technical Paper

Changing of Stamping Process Design and Practice Due to Integrated Design Approach to Car Body Quality Enhancement

1997-02-24
970983
Customer preference for the “eye catching” and aesthetically good looking product has made the car quality a key competitive issue. Manufacturers have no choice but to design and manufacture products to exceptional levels of quality while remaining cost competitive. If excessive costs of “quality” are to be avoided, product and process design standards must be harmonised to ensure that product quality can be designed in from the start of a new product development cycle. However, the subjective nature of the car body aesthetic quality makes it difficult to ensure effective communication across different functions of the organization. Traditionally, product engineers are more used to designing for product performance targets such as stiffness, dentability and weight, while process engineers are primarily concerned with ensuring manufacturing feasibility within an agreed cost target.
X