Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Sustainability Assessment Using Dynamic Systems Modelling

2001-11-12
2001-01-3740
A dynamic systems modelling approach is examined for its suitability for assessing sustainable performance in technological innovation. A computer model of the energy needs in the Canadian road transportation sector was developed to study the sustainable performance of bio-ethanol. It considers the potential increase in the consumption of energy as the economy expands in the next 25 years, taking into account demographic trends, consumer choices, and technological advances. While the primary environmental measure tracked is focused on greenhouse gas emissions with respect to the Kyoto target, it also includes considerations for land use and farming practices, and distinguishes between fossil and bio-carbon emissions. As well, it allows for different sources of biomass, including crop byproducts and dedicated crops. Various scenarios for bio-ethanol to penetrate the consumer market were set up to investigate a range of future evolution paths.
Technical Paper

Engineering Development and Performance of an Integrated Structural Instrument Panel Assembly and Heater-Ventilation-Air-Conditioning Assembly

2000-03-06
2000-01-0416
Textron Automotive Trim, Valeo Climate Control, and Torrington Research Company, with assistance from GE Plastics, have developed an integrated instrument panel system to meet ever-increasing industry targets for: Investment and piece-cost reduction; Mass/weight savings; Quality and performance improvements; Packaging and space availability; Government regulation levels; and Innovative technology. This system, developed through feedback with the DaimlerChrysler Corporation, combines the distinctive requirements of the instrument panel (IP) with the heater-ventilation-air-conditioning (HVAC) assembly. Implementing development disciplines such as benchmarking, brainstorming, and force ranking, a number of concepts were generated and evaluated. Using a current-production, small, multi-purpose vehicle environment, a mainstream concept was designed and engineered.
Technical Paper

A Comparison of Thermoplastic Composite vs.Conventional-Steel Instrument Panel Systems for Side-Impact Energy Management

1998-02-23
980962
This paper discusses the contribution of instrument panel systems in a European side-impact event. Systems studied include a conventional steel cross-car beam system and a glass-mat thermoplastic (GMT) composite system, evaluated in a body-in-white structure. A thermoplastic composite instrument panel system offers mass, cost, and recycling benefits, but its performance vs. a conventional steel cross-car beam system merited an engineering investigation. The comparison methodology used included a nonlinear dynamic side impact study with a moving, deformable barrier developed according to European Economic Community (EEC) standards. A finite-element model used in this study simulated the body-in-white structure, barrier structure and instrument panel systems. The resulting data include velocity, displacement and energy absorption levels of various components of the respective instrument panel systems.
X