Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Common Vehicle Model for Chassis Control Design

1999-03-01
1999-01-0732
One problem with a large company with numerous engineering sites is the problem of re-inventing the wheel. Within the engineering organization several vehicle models may be developed independently even though one would suffice. This paper discusses a model that has been developed jointly by groups at three separate locations to replace all similar models used at those locations. This will allow resources to be used more efficiently and provide a common ground for control algorithm development. This model has been designed to be able to run in several different environments with minimal overhead. These environments include the dSpace rapid prototyping tool, Simulink®, PC, and the Applied Dynamics real time system (ADRTS). It also is very modular to allow for easy integration with other systems and to support open architecture. Uses of the model include hardware in the loop, controller in the loop and pure simulation.
Technical Paper

Evaluation of Anthropometric Requirements for the Design of an Ergometer Restraint System

2001-07-09
2001-01-2186
NTE is developing a system for neuromuscular research (MARES: Muscular Atrophy Research and Exercise System). This system is an ergometer to be flown and installed in the International Space Station in the year 2004 and is consisting of a motor, an HRS (Human Restraint System) and a control electronics that controls the motor. The subject is connected to the motor by means of the restraining system HRS. This ergometer can be used for 11 movements (wrist flexion/extension, pronation/supination and radial/ulnar deviation, trunk flexion/extension, arm pull/press, leg pull/press, elbow flexion/extension, Shoulder flexion/extension, hip flexion/extension, knee flexion/extension and ankle dorsal/plantar flexion). MARES is a research tool for physiologists, but also interesting for human factors people. It is a tool to quantitatively measure the physical condition of a person before performing a physically demanding task (e.g.
X