Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Automated Hardware-in-the-Loop Testing Using a Cloud-Based Architecture

2021-04-06
2021-01-0133
The software gradually takes over more and more tasks of the driver and paves the way to autonomous driving. Software development and software verification is therefore crucial for manufacturer's success. Standards such as ISO 26262 highly recommend requirements-based verification. Agile development uses continuous integration testing based on test automation and evaluation. All this pushed the creation of a model-based software verification environment that provides test generation and test automatization for all kinds of signal-based tests along the V-model. This paper presents a novel core component of this environment, which is as far as to the extent possible a standard-compliant cloud-based solution to test automation at the hardware level. Based on characteristic properties of testbenches, such as the wiring or the connected ECUs, hardware resources available at remote locations can be fully automated.
Technical Paper

Rapid Prototyping with the Controller Area Network (CAN)

2001-03-05
2001-01-1224
Rapid Control Prototyping (RCP) tools are becoming an essential part of the development process of modern automotive control strategies. The interface between the RCP real-time hardware and the existing electronic control unit (ECU) can be established via Controller Area Network (CAN). In a typical production ECU, the limited availability of unused message objects and the rate of data transfer on the CAN bus are limiting factors which influence the mechanism used for communication between the ECU and the RCP system. This document outlines the details involved in a CAN-based selective bypass approach. A data transfer mechanism is proposed which makes use of only two message objects to establish communication. The introduced time delays and the synchronization of the time driven main tasks are discussed. The proposed mechanism is validated through engine testing and the implementation details are described as well.
Technical Paper

On the Validity of Mean Value Engine Models During Transient Operation

2000-03-06
2000-01-1261
Because there are no production-type sensors which are able to measure the flow directly at the intake port, it is becoming common practice to use models of varying complexity to infer the port air mass flow from other measurements. Given the tight requirements of modern air/fuel ratio (AFR) control strategies, the accuracy of these models needs to be better than ever, during steady-state of course (though λ feedback strategies are by design very robust), but mainly during transient operation. This paper describes why conventional models might be inaccurate during engine transients.
Technical Paper

Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications

2000-03-06
2000-01-0260
With the tightening of exhaust emission standards, wide bandwidth control of the air/fuel ratio (AFR) of spark ignition engines has attracted increased interest recently. Unfortunately, time delays associated with engine operation (mainly injection delays and transport delays from intake to exhaust) impose serious limitations to the achievable control bandwidth. With a proper choice of sensors and actuators, these limitations can be minimized provided the port air mass flow can be accurately predicted ahead in time. While the main objective of this work is to propose a complete AFR controller, the main focus is on the problems associated with port air mass flow prediction.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Technical Paper

Modelling of the Intake Manifold Filling Dynamics

1996-02-01
960037
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
Technical Paper

Event Based Engine Control: Practical Problems and Solutions

1995-02-01
950008
In an earlier paper, some of the authors of this paper pointed out some of the difficulties involved in event based engine control. In particular it was shown that event based (or constant crank angle) sampling is very difficult to carry out without running into aliasing and sensor signal averaging problems. This leads to errors in reading the air mass flow related sensors and hence inaccurate air/fuel ratio control. The purpose of this paper is first to demonstrate that the conjectures about the operator input spectrum in a vehicle do actually obtain during vehicle operation in realistic road situations. A second purpose is to extend earlier modelling work and to present an approximate physical method of predicting the level of engine pumping fluctuations at any given operating point. The physical method given is based on a modification of the Mean Value Engine Model (MVEM) of a Spark Ignition (SI) engine presented previously.
Technical Paper

Conventional Event Based Engine Control

1994-03-01
940377
Many existing production engine controllers use event (or constant crank angle increment) based sampling and computation systems. Because the engine events are synchronized to the internal physical processes of an engine, it is widely accepted that this is the most logical approach to engine control. It is the purpose of this paper to deal with this assumption in detail and to illuminate various failures of it in practical systems. The approach of the paper is in terms of overall general control system design. That is to say that the problem of event based engine control is considered as a general control problem with its standard components: 1. modelling (engine plus actuator/sensor), 2. specification of desired performance goals, 3. control system design method selection and 4. experimental testing.
X