Refine Your Search

Search Results

Author:
Viewing 1 to 19 of 19
Technical Paper

Simulation to Support an Integration Test Project of CEEF

2001-07-09
2001-01-2130
A simulation of an open mode system experiment was run using the same experimental conditions as an integration test conducted from September 1999 to February 2000 using the Closed Plant Experiment Facility at the Institute for Environmental Sciences in order to evaluate the operation of closed mode system to be conducted in future. Operation of the open mode system experiment required a supply of water and carbon dioxide from the outside, and the discharge of nutrient waste water and oxygen. The present simulation verified the feasibility of using non-integrated wet-oxidation processor, nutrient synthesis unit and nutrient waste water processor connected within a closed mode system, and it was confirmed that sufficient material circulation could be achieved when rice and soybeans were divided into six beds with different growing stages to facilitate control of the nutrient solution.
Technical Paper

Development of Simulation Model and Its Application to an Integration Test Project of CEEF

2000-07-10
2000-01-2334
Simulation of material circulation for a closed experiment using CEEF consisting of a plant and human system was performed. Initial set of materials contained in CEEF was decided by a decision procedure. Before the closure where the plant system is operated independently, the plant system (CPEF) needs gas exchange of O2 and CO2 with the outside. After the closure where the plant and human system are operated in a cooperation mode with mutual material exchange, no exchange of materials is needed. The closure time corresponds to the longest cultivation period to be cultivated in CPEF.
Technical Paper

Problems of Human Life in a CELSS

1997-07-01
972515
Discussions are given about problems of human life at the initial stage of a CELSS, which consists of humans and plants in artificial environment controlled by various material circulation processes. The initial CELSS has many restrictions: for example, vegetable-base diet, no detergent, no dentifrice and no cosmetics. Such environmental changes produce new lifestyle and give stress to humans. The reduction of stress should be considered to be necessary conditions in the operation of closed ecological systems on the same level as the environmental condition and material process. The diet is an important part of the lifestyle. Problems and proposals of lifestyle in CEEF are discussed.
Technical Paper

Experimental Study on Ammonia and Ammonium Nitrate Production System in a Closed Ecological Experiment Facility

1997-07-01
972518
In CEEF(Closed Ecological Experiment Facility) which is the first Japanese CELSS experiment facility, the ammonia and ammonium nitrate production system is a nitrogen fixation system as a part of nitrogen circulation system. Nitrogen and water which are input materials to the system are processed to produce ammonia water and ammonium nitrate solution as raw materials of fertilizer for plant cultivation. The design basis of the system is to convert 125g/day of nitrogen to ammonia and ammonium nitrate based on the amount of one person's metabolism. Experiment of the system has been carried out and we have studied characteristics of the system.
Technical Paper

Simulation Software of Material Circulation in a CEEF: Closed Ecology Experiment Facility

1996-07-01
961500
A conceptual study for a computational simulator of material circulation in a CEEF was performed. CELSS such as the CEEF (Closed Ecology Experiment Facility) which is under construction in the Institute for Environmental Sciences have many physico-chemical devices. To simplify their programming, many physico-chemical devices were classified into several function groups using C++, a specially designed programming language to support the object oriented programming technique. Based on the classifications, the simulation software was made and the simulation was performed. The simulation results predict that stable operation of CEEF can be obtained.
Technical Paper

Nitrogen Fixation System as a CELSS Subsystem for CEEF

1996-07-01
961418
The Nitrogen Fixation System (NFS) which produces ammonia and nitric acid from nitrogen and water has been developed. The NFS is one essential part of material circulation system of the CEEF (Closed Ecological Experiment Facility) the first Japanese CELSS experiment facility. Basically, physico-chemical and some new technologies are utilized as elemental processes in the NFS. Low pressure ammonia synthesis, ammonia enrichment with PSA and water electrolysis with SPE are such new technologies. We designed and installed the NFS as a subsystem of CEEF. The capacity of the NFS is 125g/day as fixed nitrogen. First operation of NFS is expected to be done early fiscal year of 1996 in CEEF.
Technical Paper

Material Circulation Design Based on Organic Matter Analysis of Edible and Inedible Parts of Plants for CEEF

1996-07-01
961414
In order to verify the material circulation design for a Closed Ecology Experiment Facilities, CEEF, the organic element analysis of edible and inedible parts of the major candidate plants (rice, soybean, sesame and komatsuna (Brassica campestris)) has been carried out experimentally and by using food analysis data. In the experiment, rice, soybean and sesame were cultivated by hydroponics and soil culture for this purpose. The organic element analysis data from the food analysis data were made using empirical chemical equations formulated as to major nutriments by Volk and Rummel. The experimental results showed good agreement with those obtained from the food analysis data. Komatsuna has high nitrogen content. Inedible parts of rice, soybean and sesame have almost the same constituent ratio. The edible part of soybean contains five times as much nitrogen as its inedible part. Rice shows no significant difference between the edible and inedible parts.
Technical Paper

Material Flow Simulation Software for CEEF: Closed Ecology Experiment Facilities

1995-07-01
951537
IES (Institute for Environmental Sciences) is now constructing CEEF at Rokkasho, Aomori, Japan. The simulation for material flow is made based on a system model of CEEF, which includes one person and 7 plant species of Rice, Soybean, Komatsuna, Sesame, Tomato, Potato and Buckwheat. In this simulation software, plants, human and their support systems are mathematically defined and material flows such as O2, N2, CO2, waters, fertilizers and organic matters are computed. This software simulates only material flow and but does not simulate thermal dynamics of the environment. The simulation result showed reasonable material flows in a closed system.
Technical Paper

Construction of CEEF is Just Started CEEF:Closed Ecology Experiment Facilities

1995-07-01
951584
Construction of Closed Ecology Experiment Facilities (CEEF) is started in Rokkasho village of Aomori prefecture, the northern part of Honshu island in Japan. CEEF consist of Closed Plant Experiment Facility (CPEF) and Closed Geo-Hydrosphere Experiment Facility (CGEF) with capability to simulate ecological systems containing plants, animals, human, trees and sea living things. These biospecies are selected according to experimental plans and are maintained their lives in controlled environments. Recyclings of materials circulating in the closed system of CEEF are made mainly utilizing physical chemical treatments. The construction of CEEF will be completed by 1998. This paper mainly describes design of CPEF.
Technical Paper

Desorbing Test on Trace Contaminants for the Japanese Closed Ecology Experiment Facilities (CEEF)

1995-07-01
951582
In the closed environments, removal of trace contaminants generated from persons, animals, and plants is important function to keep the environment below the allowable level. We conducted the fundamental tests in order to confirm design of TCCA (Trace Contaminants Control Assembly) for Closed Ecology Experiment Facilities (CEEF), and obtained the following results; 1) The palladium-on-alumina catalyst is suitable for CO, CH4, C2H4 conversion at temperature lower than 400°C. 2) The alkali impregnated AC (activated charcoal) is effective for NO2, SO2 removal and prevents catalyst poisoning from SO2. 3) The active-desorbing conducted by hot air blow-throw an AC is effective for C2H5OH, CH2Cl2 desorbing. We discuss the fundamental test and design conditions for TCCA.
Technical Paper

Mineral Recovery System in a CEEF (2)

1995-07-01
951581
A unique recovery system for NaCI (salt) from urine, which consists of electrodialysis (ED) and crystallization processes is proposed. The possibility of the mineral recovery included in urine is shown in a previous report. To improve the purity of the produced salt, pH control is needed as a pretreatment. By controlling pH of the feed solution to about 10, multivalent ions such as Ca2+ and Mg2+ are crystallized as phosphate solids which can be separated by filtration. As well as raising the NaCI purity, this controls scaling b y multivalent ions.
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Mineral Recovery System in a CEEF

1994-06-01
941499
We propose a new recovery system for NaCl from human urine. The system has an electrodialysis (ED) part and a crystallization part. Separation and concentration characteristics of the system are discussed for fundamental experiments of the ED and crystallization parts. Concentrated NaCl-KCl mixed solution is obtained using the ED process from simulated oxidized urine and sweat which include Ca2+ and S042- ions. Then, the crystallization process is used to separate about 80% of the NaCl from the ED treated solution. The experimental studies indicate that the mineral recovery system we proposed can recover NaCl from waste water of a CEEF.
Technical Paper

Experimental Study of Nitrogen Fixation System in a Closed Ecological System

1994-06-01
941409
Nitrogen Fixation Systems(NFS) suitable for plant cultivation in a closed environment have been studied through experimental verification. The system is composed of physico-chemical processes only. Nitrogen gas and water are fed into the system as raw materials,and ammonia and ammonium nitrate solution are produced as final products, which are utilized as main fertilizers in plant cultivation. Each elemental chemical process in NFS is selected with regard to unique design criteria concerning safety, energy effectiveness, compactness and reliability. An experimental apparatus for important unit processes has been made for the purpose of verifying process data. A detail design for nitrogen fixation facilities, planned for construction as the first Japanese CELSS laboratory, was carried out.
Technical Paper

Material Circulations in a Closed System

1993-07-01
932289
Materials circulating in a closed ecological system are classified as metabolic ones and nonmetabolic ones. Nonmetabolic substances relate to environment constituents and cultural activities. Treatment of these materials are discussed from a view point of CELSS concept. The closed system, CEEF, will be constructed in Japan in the near future. CEEF is an experiment facility with processing capacity of two adult persons, consisting of a plant module, an animal module, a habitat module and supporting facilities for the three modules. The supporting facilities are composed of artificial processors of gases, waters and wastes. The plant module has artificial and natural lighting cultivating sections.
Technical Paper

Experimental and Theoretical Study on Membrane Distillation Using Thermopervaporation

1992-07-01
921397
Water recycling systems have been studied at Hitachi using thermopervaporation technology for space use for about ten years. According to the studies this method is a good candidate for space application from the viewpoint of good water quality, system compactness and microgravity adaptability. In this paper we discuss (1) fundamental characteristics (2) temperature distribution and (3) effect of volatile substances of membrane distillation by thermopervaporation method from both theoretical and experimental point of view.
Technical Paper

A Trade Study Method for Determining the Design Parameter of CELSS Subsystems

1992-07-01
921198
Developments of many subsystems, such as gas separater, water purifier, decomposition unit of waste materials and others, are necessary to construct the closed loop life support test facility for studying the material circulationin earth environment and for human habitation in space. On the other hand, in order to develop and integrate these subsystems infacility, the designing paramaters of each subsystem are to be determined based on the required material flows estimation. The required material flows are very complicated and difficult to be analyzed. Therefore the trade study method for determining the design paramaters of each subsystem is to be integrated based on the break down of system configulation Level as below. Level-0 is the material flow level between the total closed loop life support facility and outside. Level-1 is the material flow level between the plantation, habitat and animal breeding modules and their supporting systems.
Technical Paper

Mineral Recovery Systems for Humans in a CELSS

1992-07-01
921237
The recovery of important minerals, salt (NaCI) and potassium (K), in a closed system, namely CELSS is discussed. NaCI is needed for humans, but is potentially harmful to plants. Salt is recovered after wet oxidation of urine. Since Na and K have similar chemical and physical properties, their recovery or separation may require sophisticated methods. Na, CI and K ions are separated from other ions by electrodialysis with univalent selective ion-exchange membranes and then NaCI is obtained separately by a crystalization process. Preliminary experiment on crystalization of NaCI-KCl mixed solutions showed a good separation result.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
X