Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Driving Down On-Highway Particulate Emissions

2006-04-03
2006-01-0916
It has been reported that particulate emissions from diesel vehicles could be associated with damaging human health, global warming and a reduction in air quality. These particles cover a very large size range, typically 3 to 10 000 nm. Filters in the vehicle exhaust systems can substantially reduce particulate emissions but until very recently it was not possible to directly characterise actual on-road emissions from a vehicle. This paper presents the first study of the effect of filter systems on the particulate emissions of a heavy-duty diesel vehicle during real-world driving. The presence of sulfur in the fuel and in the engine lubricant can lead to significant emissions of sulfate particles < 30 nm in size (nanoparticles).
Technical Paper

The Development and In-Field Demonstration of Highly Durable SCR Catalyst Systems

2004-03-08
2004-01-1289
Selective Catalytic Reduction (SCR) systems will be widely used to meet the Heavy Duty Diesel (HDD) Euro IV emissions legislation. Reports on a number of demonstrations of such systems have already been published, but the long-term durability of such systems is still to be proven. The potential catalyst deactivation induced by oil-derived species and thermal processes have, up to now, received very little attention, despite the fact that these HDD emission control systems will need to be durable for distances of the order of 500,000 km or more. This paper describes the development and performance of a new family of SCR catalyst with very high thermal durability and poison resistance. The thermal durability of the catalyst was initially demonstrated within long-term, high temperature engine bench ageing studies.
Technical Paper

The Development and In-Field Performance of Highly Durable Particulate Control Systems

2004-03-08
2004-01-0072
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. One system which has shown great promise in controlling PM emissions is the Continuously Regenerating Trap (CRT®) system. This system will be referred to as the CR-DPF for the remainder of this paper. Stringent durability requirements will be introduced alongside the new legislative emission limits, so it is essential that DPF systems are made to be as robust as possible. In Europe the systems are expected to need to meet a durability target of 500,000 km, while in the US this will be approximately 700,000 km (435,000 miles). This paper reports on the development of a greatly improved oxidation catalyst for these CR-DPF applications. Field and engine bench studies revealed that the previous catalyst could be poisoned by sulfur build-up during prolonged operation at low temperatures.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
X