Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Common Rail without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS

2007-04-16
2007-01-1258
An innovative hydraulic layout for Common Rail (C.R.) fuel injection systems was proposed and realized. The rail was replaced by a high-pressure pipe junction to have faster dynamic system response during engine transients, smaller pressure induced stresses and sensibly reduced production costs. Compared to a commercial rail, whose inside volume ranges from 20 to 40 cm3, such a junction provided a hydraulic capacitance of about 2 cm3 and had the main function of connecting the pump delivery to the electroinjector feeding pipes. In the design of the novel FIS layout, the choice of high-pressure pipe dimensions was critical for system performance optimization. Injector supplying pipes with length and inner diameter out of the actual production range were selected and applied, for stabilizing the system pressure level during an injection event and reduce pressure wave oscillations.
Technical Paper

High-Boost C.R. Diesel Engine: A Feasibility Study of Performance Enhancement and Exhaust-Gas Power Cogeneration

2002-10-21
2002-01-2814
The present work concerns the study of the potentialities of high-boost small-displacement C.R. (Common Rail) diesel engines where the compressor and the expander are mechanically disengaged for the purpose of power cogeneration from the exhaust gas. This objective can be achieved by means of advanced concept electrical devices capable of delivering the energy produced by the expander either to the drivetrain transmission or to the even more power-demanding auxiliary equipment of both the engine and the vehicle. The performance of a small-displacement boosted diesel engine with a common-rail injection system has been predicted by means of a computational code obtained by integrating different in-house non-commercial codes that simulate the intake, combustion and exhaust processes. The model validation has been carried out by means of the experimental data obtained at Fiat Research Center on a commercial small-displacement C.R. turbocharged diesel engine.
Technical Paper

Experimental Investigation of Fuel Consumption and Exhaust Emissions of a 16V Pent-Roof Engine Fueled by Gasoline and CNG

2001-03-05
2001-01-1191
A systematic experimental investigation was undertaken to compare the fuel consumption and exhaust emissions of a production SI engine fueled by either gasoline or compressed natural gas (CNG). The investigation was carried out on a two-liter four-cylinder engine featuring a fast-burn pent-roof chamber, one centrally located spark plug, four valves per cylinder and variable intake-system geometry. The engine was originally designed at Fiat to operate with unleaded gasoline and was then converted at Politecnico di Torino to run on CNG. A Magneti Marelli IAW electronic module for injection-duration and spark-advance setting was used to obtain a carefully controlled multipoint sequential injection for both fuels.
Technical Paper

Performance Analysis and Comparison of a Multivalve SI Engine Running on Either Gasoline or CNG

2000-06-12
2000-05-0086
A comparative investigation of both fuel consumption and exhaust emissions has been carried out on a production SI engine operated by either gasoline or compressed natural gas (CNG). The engine had the main features of being a multivalve, fast-burn pent-roof chamber engine with a variable intake-system geometry. It was originally designed at Fiat Auto to operate with unleaded gasoline and was then converted at Politecnico di Torino to run on CNG. To that end, in addition to designing and building the CNG fuel plant, the multipoint Bosch Motronic M1.7 electronic module for injection-duration and spark-timing control was replaced with a Magneti-Marelli IAW ECM designed to obtain a multipoint sequential injection. With this new ECM, the engine was modified so as to work with either natural gas or gasoline.
Technical Paper

Unsteady Convection Model for Heat Release Analysis of IC Engine Pressure Data

2000-03-06
2000-01-1265
A contribution has been given to the thermodynamics approach usually used for analyzing the combustion process in IC engines on the basis of cylinder pressure data reduction. A survey of heat release type combustion models and of their calibration methods has first been carried out with specific attention paid to the bulk gas-wall heat transfer correlations used. Experimental results have given evidence that most of these correlations are incapable of predicting the phase shift occurring between the gas-wall temperature difference and the heat transfer during the engine compression and expansion strokes, owing to the transient properties of the fluid directly in contact with the wall. This work develops and applies a refined procedure for heat release analysis of cylinder pressure data including the unsteadiness effects of the convective heat transfer process.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

1995-10-01
952467
A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
X