Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

An Active Control Device Based on Differential Braking for Articulated Steer Vehicles

2006-10-31
2006-01-3568
In this study, application of differential braking strategy to remove the oscillatory instability or snaking behavior of an articulated steer vehicle is presented. First, a linearized model of the vehicle is described that is used to represent the equations of motion in the state-space form. Then, this model is utilized for designing a sliding mode controller to adjust the differential braking on the rear axle to stabilize the vehicle during the snaking. The performance of the resulting active control system is evaluated in different driving conditions by using the linearized model. Finally, the control system is incorporated into a virtual prototype of the vehicle in ADAMS, and its operation is examined. The results from the linear model analysis and simulations in ADAMS are reasonably consistent.
Technical Paper

Tire Forces and Moments and On-road Lateral Stability of Articulated Steer Vehicles

2005-11-01
2005-01-3597
The on-road lateral stability of an articulated steer vehicle is investigated for both small and high deviations. First, for small deviations, a linear model of the vehicle is devised and analyzed. This planar model is generated based on some simplifying assumptions. For instance, the equations describing the tire forces and moments are linearized, and the tire rolling resistance is neglected. A linear stability analysis of the straight line motion of the vehicle with constant forward speed is conducted by using this simplified model for different values of the torsional stiffness and damping at the articulation joint. To investigate the lateral stability of the vehicle at higher deviations, the motion of a virtual prototype of the vehicle in ADAMS/View is simulated for different conditions. Finally, the results from the simulations and the linear stability analyses are compared.
Technical Paper

Stability Control of Articulated Steer Vehicles by Passive and Active Steering Systems

2005-11-01
2005-01-3573
To remove the snaking mode of an articulated steer vehicle, an active steering system is proposed. First, the existing steering systems of articulated steer vehicles, including hydraulic-mechanical and hydrostatic steering systems, are reviewed. Then, a combined linearized model of the vehicle with a hydraulic-mechanical steering system is developed. By using this model, two passive methods to decrease the snaking, including an increase in the friction at the articulation joint and leakage across the cylinders are detailed. To overcome the shortcomings of these solutions, an active steering system is also introduced. It is shown that the proposed steering system not only removes the instability, but also improves the steering response of the vehicle.
Technical Paper

Engine Rigid Body Properties Identification Using Engine Run-Up Tests

2005-04-11
2005-01-1313
This paper deals with an identification method for engine rigid body inertia properties based on available accelerometer data at mount locations. Unlike other rigid body direct physical parameter identification methods, here inertia properties are extracted from an assembled engine under operating conditions. In addition to acceleration responses, only mount dynamic stiffness measurements are required and there is no need to measure unbalance forces and moments of engine. Using a linear frequency-domain model of engine, mounts, and chassis, a general algorithm is developed.
Technical Paper

Application of Shape Memory Alloys to a New Adaptive Hydraulic Mount

2002-07-09
2002-01-2163
Widespread use of adaptive mounts depends on their cost, simplicity, and reliability. In this paper, a new adaptive hydraulic mount is introduced that its upper chamber compliance is changed using shape memory alloy (SMA) wires. Sensitivity analysis is used to show the effectiveness of changing the compliance on the dynamic stiffness of the mount. The finite element technique is applied to the main rubber of the hydraulic mount in which the SMA wires are embedded to calculate the maximum change in the compliance. It is shown that SMA wires can effectively modify the compliance of the upper chamber. It is also shown that a simple on-off control is sufficient for the adaptive mount.
X