Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

3D Simulations And Experimental Validation of High EGR - PHCCI Combustion

2007-09-16
2007-24-0037
The present work addresses the possibility to correctly simulate Partial Homogeneous Charge Compression Ignition (PHCCI) combustion, obtained by the application of EGR up to 60% without using detailed kinetic models. In particular, the laminar and turbulent time characteristic model has been analyzed and improved. The study illustrates the prediction capabilities that can be achieved with such an approach. The paper reports the results obtained from the simulation of a single cylinder research engine and a four-cylinder diesel engine to verify the validity of the proposed method independently of engine geometry and configuration. All numerical results are compared with experimental pressure traces and rates of heat release, as well as with NOx and soot emissions over a wide range of operating conditions. With the modified characteristic time model, realistic simulations of engine combustion up to EGR values of about 60% have been obtained for both engines.
Technical Paper

Investigation of Thermal and Fluid Characteristics in Automotive Headlights

2005-09-11
2005-24-069
Headlights manufactures in the automotive industry make a large usage of polymers and plastic materials addressing important issues such as thermal stress control and water condensation on the inner surfaces of the headlamp as important factors for headlight design. In this paper, an innovative simulation methodology to calculate thermal distribution in automotive headlights is illustrated. With this method radiation is accurately calculated by means of a dedicated software whereas conductive and convective heat transfer is calculated by means of a general CFD code. A condensation model has also been developed and utilized with the CFD code to investigate the effect of forced convection flow through the headlight vents on water film evaporation. CFD results have been validated against measured headlight wall temperatures and flow velocities showing an encouraging degree of agreement.
Technical Paper

A Study of H2, CH4, C2H6 Mixing and Combustion in a Direct-Injection Stratified-Charge Engine

1997-05-01
971710
The combustion characteristics of three gaseous fuels (hydrogen, methane and ethane) in a direct-injection stratified-charge single-cylinder engine with a centered square head-cup operated at 800 rpm (compression ratio = 10.8, squish ratio = 75%, nominal swirl ratio = 4) were studied to assess the extent to which the combustion is controlled by turbulent mixing, laminar mixing and chemical kinetics. The injection of gaseous fuels was via a Ford AFI injector, originally designed for the air-forced injection of liquid fuel. Pressure measurements in the engine cylinder and in the injector body, coupled with optical measurements of the injector poppet lift and shadowgraph images of the fuel jets provided both quantitative and qualitative information about the in-cylinder processes. To make the cases comparable, the total momentum of the fuel jets and the total heat released by the three fuels was kept the same (equivalence ratio = 0.316, 0.363, 0.329 for H2, CH4 and C2H6, respectively).
X