Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Computer Simulation of a Hydrostatic Drive for a Soil Bin

1992-09-01
921687
An analysis has been conducted on the hydrostatic drive system for driving a soil bin. A comparison of the bin velocity was made between the pure inertia load and inertia plus disturbance. Also, the pressure fluctuations that are predicted are quite sensitive to the leakage values chosen. A low leakage value predicts an oscillatory pressure response. Although no feedback was employed for the velocity output, the load disturbance changed the output velocity very little.
Technical Paper

Use of a Flapper-Nozzle Valve for Axial Piston Pump Control

1991-09-01
911817
A mathematical model of an axial piston pump with a flapper-nozzle valve was developed. The first stage was dynamically stable, and calculated values of first-stage gain and dynamic response agreed well with experimental values. Linearized relations were produced for each component part and were combined to form the total state-variable representation of the model. The open loop system, the combined axial piston pump and flapper-nozzle valve, exhibited dynamic instability. However, when the feedback loop was augmented by the output pressure differential, stability was achieved. From the time responses of the augmented optimal control system, we observed that an increase of input current had little effect on the system response. Doubling the discharge flow rate doubled the overshoot, and an increase in the discharge volume slowed down the system responses. Increasing rotational speed of the pump produced a higher overshoot and a slower response.
Technical Paper

Simulation of a Hydraulic Pump Control Valve

1987-04-01
870807
This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.
X