Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Effect of Jet Ignition on Lean Methanol Combustion Using High Compression Ratio

2023-04-11
2023-01-0319
Significant reductions in vehicle carbon dioxide (CO2) emissions are required to meet fleet targets and this is increasing the interest in new combustion concepts for internal combustion engines. There is also an increased focus on the use of renewable fuels to reduce environmental impact. This study focusses on the use of methanol as an internal combustion engine fuel. Methanol is a liquid fuel that is readily produced from waste bio-matter, as well as synthetically using renewable energy, and is proposed as a primary energy vector in hard-to-decarbonise sectors, such as Marine, but could be equally applicable to road transportation. In this study, the MAHLE Di3 engine, which is a highly boosted 3-cylinder gasoline direct injection engine capable of operating at over 30 bar BMEP, has been modified to include MAHLE Jet Ignition technology, in both passive and active configurations, as well as utilising a very high compression ratio to maximise thermal efficiency.
Technical Paper

Technical Assessment of the Feasibility of the use of Bio-Gasoline as a Drop-In Gasoline Fossil Fuel Replacement

2022-08-30
2022-01-1087
Vehicle manufacturers are facing increasing legislative pressure to reduce vehicle emissions and achieve zero tailpipe CO2 emissions within the coming decade. The focus on techniques to reduce the tailpipe CO2 emissions, rather than vehicle lifecycle emissions, naturally dictates electrified solutions. However, this will not address the increased emissions resulting from vehicle manufacture, the emissions of the legacy fleet, or enable niche or classic applications, to be decarbonised for future use. The use of bio-derived fuels, and fully synthetic fuels, can provide a technical solution to these challenges, but it is beneficial if these can be used as a drop-in replacement to existing fossil derived fuels, as this would enable straight-forward backward compatibility with existing vehicles and avoid the need to re-engineer future engine designs or upgrade existing hardware.
Technical Paper

MAHLE Modular Hybrid Powertrain for Large Passenger Cars and Light Commercial Vehicles

2022-06-14
2022-37-0012
Vehicle manufacturers are experiencing a shift in legislation and customer attitudes towards powertrain technologies. To support the pathway towards net-zero emissions by 2050, technologies that significantly reduce CO2 emissions will be needed. This will require increasing levels of electrification, and in the areas of compact cars and urban transportation, the adoption of pure battery electric powertrains is expected to become the dominant technology. For large passenger cars and light commercial vehicles (LCVs) meeting all customer requirements, including range, payload, towing capability, and purchase cost with a pure electric vehicle is challenging and requires the use of heavy and expensive battery packs, which have a high embedded CO2 content. The study builds on the work previously presented on the MAHLE modular hybrid powertrain (MMHP) concept and examines the suitability of this powertrain configuration to meet the future needs of large passenger cars and LCVs.
Technical Paper

Knock Mitigation Benefits Achieved through the Application of Passive MAHLE Jet Ignition Enabling Increased Output under Stoichiometric Operation

2021-04-06
2021-01-0477
Engine and vehicle manufacturers are facing increasing pressure from legislation to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst also satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2, whilst also being able to operate over the whole map without the use of fuel enrichment for component protection, is increasing the interest in novel combustion technologies. The pre-chamber-based Jet Ignition concept produces high energy jets of partially combusted species that induce ignition in the main combustion chamber to enable rapid and stable combustion. The present study focusses on the potential of passive jet-ignition to enable increased output whilst maintaining stoichiometric operation through reduce knock sensitivity.
Journal Article

Optimization of Lambda across the Engine Map for the Purpose of Maximizing Thermal Efficiency of a Jet Ignition Engine

2020-04-14
2020-01-0278
Progressively more stringent efficiency and emissions regulations for internal combustion engines have led to growing interest in advanced combustion concepts for spark ignition engines. MAHLE Jet Ignition® (MJI) is one such concept which enables ultra-lean (λ > ~1.6) combustion via air dilution. This pre-chamber-based combustion system has demonstrated highly efficient lean operation, producing efficiencies competitive with those of advanced compression ignition concepts. Compared to a traditional spark ignition engine, the additional degrees of freedom associated with Jet Ignition introduce further complexity when optimizing the system for peak efficiency throughout the engine map. The relationship between operating condition and the lambda at which peak efficiency occurs for a Jet Ignition engine has been presented in prior work by the authors.
Technical Paper

Application of the Passive MAHLE Jet Ignition System and Synergies with Miller Cycle and Exhaust Gas Recirculation

2020-04-14
2020-01-0283
Driven by legislation, economics and increasing societal awareness, engine and vehicle manufacturers are facing increasing pressure to reduce vehicle emissions and deliver improved fuel economy. Significant reductions in carbon dioxide (CO2) emissions will need to be achieved to meet these requirements whilst at the same time satisfying the more stringent forthcoming emissions regulations. This focus on techniques to reduce the tailpipe CO2 is increasing the interest in novel combustion technologies, including dilute combustion in gasoline engines. The pre-chamber based jet ignition concept produces high energy jets of partially combusted species that induce ignition at multiple locations in the main combustion chamber to enable rapid, stable combustion, even with dilute mixtures. The present study focusses on the beneficial synergies of the pre-chamber system with high geometric compression ratio (CR), Miller cycle operation and cooled external exhaust gas recirculation (EGR).
Technical Paper

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-04-02
2019-01-0325
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine.
Technical Paper

Development of Two New High Specific Output 3 Cylinder Engines for the Global Market with Capacities of 1.2l and 1.5l

2019-04-02
2019-01-1193
MAHLE Powertrain has developed an industrialized version of its 3-cylinder downsizing engine as a low cost, high specific output engine, for the global automotive market. The engine has been developed in both 1.2 and 1.5 liter capacities, with the maximum commonality being maintained between the two variants. Through careful design, the engines are capable of delivering exceptionally high-specific torque and power outputs whilst utilizing only simple low-cost technology. At the same time the engines have also been engineered to meet the requirements of the latest Euro 6c and China 6a emissions standards. This was demonstrated very early in the project through use of a representative development vehicle. The 1.2 and 1.5 liter engines are rated at 30bar Brake Mean Effective Pressure (BMEP) and 100 kW/l and 28 bar BMEP and 94 kW/l respectively and are both capable of achieving these outputs whilst operating on 92 RON gasoline.
Technical Paper

Analysis of the Hardware Requirements for a Heavily Downsized Gasoline Engine Capable of Whole Map Lambda 1 Operation

2018-04-03
2018-01-0975
MAHLE has developed a heavily downsized demonstrator engine to explore the limits, and potential benefits, of engine downsizing. The 1.2 litre, 3-cylinder, MAHLE downsizing (Di3) engine, in conjunction with an Aeristech 48 V electric supercharger (eSupercharger, eSC), achieves a BMEP level of 35 bar and a specific power output in excess of 160 kW/litre. The eSupercharger enables high specific power output, good low speed torque and excellent transient response. The resulting heavily downsized engine has been installed into a demonstrator vehicle that also features 48 V mild hybridization. At specific power output levels above 90 kW/litre the engine is operated with excess fuel in order to protect the turbine from excessive exhaust gas temperatures. In this analytical study, the boosting system requirements to maintain lambda 1 fuelling, via the use of EGR, across the entire engine operating map for the eSupercharged version of the MAHLE Di3 engine, have been explored.
X