Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

A Pass-By Noise Prediction Method Based on Source-Path-Receiver Approach Combining Simulation and Test Data

2019-01-09
2019-26-0188
Optimizing noise control treatments in the early design phase is crucial to meet new strict regulations for exterior vehicle noise. Contribution analysis of the different sources to the exterior acoustic performance plays an important role in prioritizing design changes. A method to predict Pass-by noise performance of a car, based on source-path-receiver approach, combining data coming from simulation and experimental campaigns, is presented along with its validation. With this method the effect of trim and sound package on exterior noise can be predicted and optimized.
Technical Paper

A Novel Approach for High Frequency Interior Noise Prediction

2018-04-03
2018-01-0148
Since Statistical Energy Analysis (SEA) is based on lumped parameters, acoustic responses predicted by SEA are spatially discontinuous. However, in many practical applications, the ability to predict spatially continuous energy flow is useful for guiding the design of systems with improved acoustical characteristics. A new approach, utilizing integral equations derived from energy flow concepts, is developed to predict the continuous variation of acoustic field such as sound pressure level in the interior of acoustic domains using structural response predicted by SEA. The computer code developed based on energy flow boundary integral equations is initially validated by analyzing sound propagation in a duct.
Technical Paper

Acoustic Simulation of Multilayered Noise Control Treatment with Porous Material

2018-04-03
2018-01-0144
Porous materials have been applied increasingly for absorbing noise energy and improving the acoustic performance. Different models have been proposed to predict the performance of these materials, and much progress has been achieved. However, most of the foregoing researches have been conducted on a single layer of porous material. In real application, porous materials are usually combined with other kinds of materials to compose a multilayered noise control treatment. This paper investigates the acoustic performance of such treatments with a combination of porous and non-porous media. Results from numerical simulation are compared to experimental measurements. Transfer matrix method is adopted to simulate the insertion loss and absorption associated with three samples of a noise control treatment product, which has two porous layers bonded by an impervious screen.
X