Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Design and Optimization of Exhaust Gas Heat Recovery System Based on Rankine Cycle and Organic Cycles

2018-04-03
2018-01-1369
In this paper, a waste heat recovery (WHR) system is designed to recover heat from the exhaust of a diesel-gen-set having an engine of 26.57 kW. The Rankine Cycle (RC) and the Organic Rankine Cycle (ORC) are used to produce additional power using water, R113, R124 and R245fa as the working fluids. Water as the working fluid gives the best improvement of 13.8% power improvement with 12.2% bsfc reduction, but fails to produce any power at the lowest operating power of 5.8 kW due to lower exhaust temperature and higher boiling point of water. This is when the WHR system is designed at the rated power of 26.57 kW. Designing at lower power of 20.0 kW improves the enhancements at this and lower powers but reduces the improvement at the rated power of 26.57 kW. This design again fails to produce any power at the lowest power.
Technical Paper

Waste Heat Recovery System for a Turbocharged Diesel Generator at Full and Part Load Operating Conditions Using Rankine and Organic Rankine Cycles

2018-04-03
2018-01-1370
Waste Heat Recovery System (WHRS) is used to extract heat from the exhaust gas from internal combustion (IC) engines to produce additional power with increase in overall efficiency of the engine. Amongst various WHRS, this paper focuses on WHRS using Rankine Cycle (RC) and Organic Rankine Cycle (ORC). A 100 kVA (80 kW engine) diesel generator was used for this research. Water, R245fa, and R134a were used as the working fluids for the cycle. To assess the performance of WHRS, the system was designed for 80 kW, 70 kW and 60 kW loads and then, for each designed load the WHRS was run for other loads and then compared. Assessment provide simulation results of RC and ORC using Engineering Equation Solver (EES) software. It was found that using water as the working fluid around 20% additional power was achieved. But it limited the working range of the system making it unsuitable for lower loads of 10 and 20 kW for this generator.
X