Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Technology to Achieve Engine Efficacy: Optimized Intake System

2019-01-09
2019-26-0052
In the era of sustainable engines where the need of high power, torque, engine life is increasing while eliminating BSFC and emission concerns, the variable length intake manifold system helps to provide optimized intake system. The research consists of adopting continuous variable length intake manifold on diesel engines where compression and suction waves provide better swirl and pressurization methodology. The continuous varying intake manifold helps to provide better volumetric efficiency by more than 100% as constructive waves provide improved swirling which leads to reducing detonation and better combustion. The manifold path changes with every range of rpm through operating butterfly valve, which also guides air intake path according to engine load. The air flow is increased at low rpm bypassing the intake air from the long and narrow path to increase low-speed torque.
Technical Paper

Technology to Achieve Engine Efficacy: Friction Reduction

2018-04-03
2018-01-0983
The engine efficacies require the blend of friction reduction approach for optimising the attained output. The research elucidates the scope of friction reduction mechanism to increase engine power and life. The engine components piston and piston rings are coated with the unique composite of graphite, molybdenum disulfide, tantalum layer to reduce friction and wear. The coating on piston minimizes direct contact between piston and cylinder liner, which reduces friction, BSFC and lead to better thermal stability, and engine life. The research also focuses on friction reduction of camshaft bearing by replacing sliding contact bearing with low friction roller bearing. The friction between engine components reduces output power, and the engine oil temperature plays a significant role in it. The research empowers zirconium dioxide coating on oil sump in order to reduce the temperature decay rate so that the optimized engine oil temperature of 100 °C can be retained for longer time.
X