Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Exergoeconomic Analysis and Modelling of LM2500+G4 Engine for Marine Propulsion and Cogeneration Application

2019-04-02
2019-01-0903
Abstract The current global energy scenario demands for fuel efficient and cost effective thermal systems of energy conversion. It leads to investigation of techniques which can minimize the energy wastage and maximize the utilization of energy. In this regard the present paper proposes a configuration (LM2500+G4 marine engine manufactured by M/S GE Aviation for cogeneration application) for marine propulsion and cogeneration. The exhaust gas temperature of LM2500+G4 marine engine is around 800 K hence heat of this exhaust stream can be utilized to produce process steam for further use. In this particular work the aforesaid configuration has been exergoeconomically analyzed to predict the total cost rate (investment cost rate + fuel cost rate) of the system. The “Average Cost Theory” has been approached for the exergoeconomic analysis. The exergoeconomic analysis is the combined study of thermodynamic concepts and economic principles.
Technical Paper

Environmental and Sustainability Aspects of an Aviation Auxiliary Power Unit Analyzed with the Aid of Exergy

2018-10-30
2018-32-0071
During the past decade environmental and sustainability issues have become major problems to overcome since they have caused regional and global consequences. This paper discusses the environmental and sustainability aspects of Gas Turbine (GT) based aviation Auxiliary Power Unit (APU) analyzed with the aid of exergy. Exergy analysis is a potential tool to determine exergy destructions and losses and their true magnitudes and exact locations. In this study some exergy based parameters such as: exergetic efficiency, waste exergy ratio, exergy recoverability ratio, exergy destruction ratio, environmental impact factor, and exergetic sustainability index are proposed and investigated. Cycle operating parameters such as compressor-pressure-ratio (rp,c), Turbine Inlet Temperature (TIT) have been chosen for analysis of the gas turbine cycle based APU. Mathematical modeling of the cycle has been done and the same has been coded in MATLAB.
Technical Paper

Exergo-environmental Analysis of Basic and Intercooled-Recuperated Gas Turbine based Aviation Auxiliary Power Unit

2018-04-03
2018-01-1376
This paper deals with the exergo-environmental analysis of gas turbine with possible application as aviation auxiliary-power-unit (APU). The present work reports a comparison of thermodynamic performance, NOx and CO emission for basic gas turbine cycle (BGT) and intercooled-recuperated gas turbine (IcRcGT) cycle based engines for possible use by the aviation industry as auxiliary power unit (APU). In addition to this environmental sustainability index of these two cycles is also presented. Various cycle operating parameters such as compressor-pressure-ratio (rp,c), combustor-primary-zone-temperature, equivalence-ratio, and residence time have been chosen for analysis of the cycles. Mathematical modeling of the cycles has been done and the same have been coded in MATLAB. Results show that IcRcGT cycle exhibits higher gas turbine power output and gas turbine efficiency in comparison to BGT cycle for the same rp,c and turbine inlet temperature (TIT).
X