Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Effect of Pilot Diesel Multiple Injections on the Performance and the Emissions of a Diesel/Natural Gas Dual Fuel Heavy-Duty Engine

2017-10-08
2017-01-2271
For diesel/natural gas dual fuel engines, the combustion of pilot diesel injection plays an important role to subsequent mixture combustion process. To better understand the effects of multiple injections, a detailed study was conducted on a 6-cylinder turbocharged intercooler diesel/natural gas dual fuel heavy-duty engine at low loads. Multiple variables were tested, including the single injection timings, the multiple injections timings and the mass ratios. The investigated results showed that the multiple pilot diesel injections have an obvious effect on not only pilot diesel combustion process but also natural gas mixture combustion process. Early injection leads to a pilot-diesel-ignition-mode and it is a two-stage auto ignition mode. This mode differs from the compression ignition mode of traditional diesel engine in regard to its random occurrence location within the spray.
Technical Paper

Numerical Investigation of In-Cylinder Stratification with Different CO2 Introduction Strategies in Diesel Engines

2014-10-13
2014-01-2635
In order to improve the performance of low temperature combustion of diesel engines to achieve ultra-low emissions and load condition expansions, exhaust gas recirculation (EGR) stratification in the cylinder was proposed to further intensify local EGR concentration and reduce the amount of EGR to acquire high average oxygen concentration within cylinder. In this study, the intake/exhaust port and combustion chamber models were explored by CFD software on a four-valve HD diesel engine, and fresh air and EGR respectively replaced by O2 and CO2 were introduced with division and timing intake strategies during the intake process for stratification optimization.
Technical Paper

Effect of CO2, N2, and Ar on Combustion and Exhaust Emissions Performance in a Stoichiometric Natural Gas Engine

2014-10-13
2014-01-2693
In recent years, strict emission regulations, the environmental awareness, and the high price of conventional fuels have led to the creation of incentive to promote alternative fuels. Among the alternative fuels, natural gas is very promising and highly attractive for its abundant resources, clean nature of combustion and low encouraging prices. But nitrogen oxides (NOx) emissions are still a problem in natural gas engines. In order to reduce NOx emissions, carbon dioxide (CO2), nitrogen (N2) and argon (Ar) were respectively introduced to dilute fuel-air mixtures in the cylinder. To this aim a 6.62 L, 6-cylinder, turbocharged, electronic controlled large-powered NG engine was subjected to a basic performance test to observe the effects of CO2, N2 and Ar on fuel economy and NOx emissions. During the test, the engine speed and torque were separately kept at 1450 r/min and 350 Nm.
X