Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Modelling and Validation of a Control Algorithm for Yaw Stability & Body Slip Control Using PID & Fuzzy Logic Based Controllers

2019-10-11
2019-28-0054
Advanced driver-assistance systems (ADAS) are becoming an essential part of the modern commercial automobile industry. Vehicle handling and stability are determined by the yaw rate and body slip of the vehicle. This paper is a comparative study of a nonlinear vehicle stability control algorithms for steering control based on two different controllers i.e. fuzzy logic based controller and PID controller. A full vehicle 14DOF model was made in Simulink to simulate an actual vehicle. The control algorithms are based on a two-track 7-DOF model with a non-linear tire model based on Pacejka “Magic tire formula”, which was used to establish the desired response of a full vehicle 14DOF model. It was found that the fuzzy logic-based control algorithm demonstrated an overall superior performance characteristic than a PID based control algorithm; this includes a significant decrease in time lag and overshoot.
Technical Paper

Vehicle Side Safety Enhancement through Door Intrusion Barrier Analysis and Recuperation

2019-01-09
2019-26-0001
The automobile industry is making huge strides to improve vehicle and occupant safety. A lot of safety improvements and modifications have been made in the past decade. But the side impact is still overlooked as not much has been improved for side safety despite most of the accidents and collisions happen to the side of a vehicle. Door intrusion barriers are the primary protection feature along with A, B and C pillars. Crashworthiness mainly depends on the position, cross-section and material of the intrusion barrier. So, our work mainly focuses on finding the optimum position, choosing the correct cross-section and finding the right material for the intrusion barrier. The objective of this project is to minimize the damage to the side of the vehicle by increasing its crashworthiness thereby reducing passenger injuries.
Technical Paper

Structural Analysis of Electric Vehicle Transmission - Mounts and Casing for Different Materials

2017-07-10
2017-28-1961
The main objective of the study is to design and analyze casing and supports of a transmission system for an electric vehicle. The system comprises of motors as the power source, constant mesh gear box coupled with limited slip differential as the power transmitting source. The space occupied by the transmission system is a foremost constraint in designing the system. The wear and tear in the system is caused by the gear meshing process and transmission error which lead to failure of the transmission system. This internal excitation also produces a dynamic mesh force, which is transmitted to the casing and mounts through shafts and bearings. In order to overcome such issues in a transmission system, a gear box casing, differential mounts and motor mounts have been designed by the use of CAD-modeling software “SOLIDWORKS”. The designs were imported to FEA software “ANSYS” for carrying out static structural analysis.
X