Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Understanding the Adverse Effects of Inlet Valve Deposits on SI Engine Operation, through a Novel Technique to Create Surrogate Deposits

2018-09-10
2018-01-1742
For gasoline spark ignition engines, port fuel injection (PFI) on a global basis remains the most common type of fuel delivery. When operated with lower quality fuels and lubricants, PFI engines are prone to suffering from the build-up of harmful deposits on critical engine parts including the inlet valves. High levels of inlet valve deposits (IVDs) have been associated with drivability issues like engine stumble and hesitation on sudden acceleration. Fuels formulated with the appropriate level of deposit control additive (DCA) can maintain engine cleanliness and even remove deposits from critical components. This study, involving a single cylinder research bench engine operated in PFI injection mode and heavily augmented with measurement equipment, aimed to gain a deeper understanding of the detrimental impacts of IVDs on engine efficiency and performance.
Technical Paper

Engine Cleanliness in an Industry Standard Mercedes-Benz M111 Bench Engine: Effects of Inlet Valve Deposits on Combustion

2017-10-08
2017-01-2239
Port fuel injected (PFI) technology remains the most common fuel delivery type present in the marketplace for gasoline spark ignition engines and a legacy vehicle fleet featuring PFI technology will remain in the market for decades to come. This is especially the case in parts of Asia where PFI technology is still prominent, although direct injection (DI) technology adoption is starting to catch up. PFI engines can, when operated with lower quality fuels and lubricants, build up performance impairing deposits on a range of critical engine parts including in the fuel injectors, combustion chamber and on inlet valves. Inlet valve deposits (IVDs) in more severe cases have been associated with drivability issues such as engine stumble and engine hesitation on sudden acceleration. Deposit control additives in gasoline formulations are a well-established route to managing and even reversing fuel system fouling.
Journal Article

Development of a Fuel System Cleanliness Test Method in a Euro 4 Direct-Injection Gasoline Engine (VW 1.4 L TSI 90 kW)

2017-10-08
2017-01-2296
Driven by increasingly stringent tailpipe CO2 and fuel economy regulations, gasoline direct injection (GDI) engines are enjoying rapidly increasing market penetration. Already more than 50% of newly produced vehicles in the US and western Europe employ direct-injection technology and many markets in Asia are also seeing an increasingly rapid uptake. However, with the adoption of GDI engine technology, which is able to push the boundaries of engine efficiency, new challenges are starting to arise such as injector nozzle deposits, which can adversely affect performance. Multi-hole solenoid actuated fuel injectors are particularly vulnerable to deposits formed when operated on some market fuels. In order to address this challenge, the development of a reliable industry test platform for injector cleanliness in GDI engines is currently underway in both the US and Europe.
X