Refine Your Search

Search Results

Author:
Technical Paper

Modeling the Sound Pressure Loss of an Electromechanical Active Helmholtz Resonator

2017-06-05
2017-01-1827
A muffler attached to an engine attenuates sound over a dedicated frequency range. This research involves the development of an active muffler that is keyed to the revolutions per minute (rpm) of the engine and suppresses the fundamental frequency being exhausted through the tailpipe. The active muffler consists of a tracking side-branch resonator terminated with a composite piezoelectric transducer. The use of an exponential horn as a resonating cavity and terminated with a composite piezoelectric transducer is presented. This would create Electromechanical Active Helmholtz Resonator (EMAHR) creates a notch that can be moved between 200-1000 Hz. The use of acoustical-to-mechanical, mechanical-to-electrical, and analog-to-digital transformations to develop a system model for the active muffler are presented. These transforms will be presented as two-port network parameters. The use of two-port networks to model the electroacoustic system are a defining factor in the analysis.
X