Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Improving Battery Pack Safety with an Innovative Fluid for Thermal Management

2021-09-21
2021-01-1250
Efficient and safe Lithium-Ion Batteries have undoubtedly become the Holy Grail of the electric vehicle industry. Any OEM’s technical roadmap is currently focused on increasing battery lifetime, energy density, or above all on safety. The battery is definitively becoming a way to differentiate electric vehicle performance. Battery safety is central; any fire is unacceptable and can damage OEM’s image and Battery Electric Vehicle (BEV) acceptance. Therefore, solutions must be developed to cope with this dramatic issue. This paper presents a battery thermal management system, helping to increase battery lifetime, but, above all, making the battery pack safer. This system relies on the use of an innovative dielectric fluid in direct contact with electrochemical cells. Fluid physical properties are designed to accurately maintain the battery pack at a specific temperature in a daily life (fast charging and fast acceleration).
Journal Article

Enhanced Anti-Wear Performance Induced by Innovative Base Oil in Low Viscosity Engine Oil

2017-10-08
2017-01-2343
The oil and additive industry is challenged to meet future automotive legislations aimed at reducing worldwide CO2 emissions levels. The most efficient solution used to date has been to decrease oil viscosity leading to the introduction of new SAE grades. However this solution may soon reach its limit due to potential issues related to wear with lower engine oil viscosities. In this paper, an innovative solution is proposed that combines the use of a new tailor-made polyalkylene glycol (PAG) with specific anti-wear additives. Valvetrain wear measurements using radionuclide technique demonstrates the robustness of this solution. The wear performance was also confirmed in Sequence IVA test. An extensive tribological evaluation (film formation, wear and tribofilm surface analysis) of the interactions between the base oil and the anti-wear additives lead us to propose an underlying mechanism that can explain this performance benefit.
X