Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Bogie Wear Pad - A Comparative Study

2021-09-22
2021-26-0442
Bogie-type suspensions for trucks are comprised of two axles and a central spring pack on each side of the truck chassis. Bogie suspensions have a good load distribution between the axles and are used for severe applications in trucks, in off-road conditions thereby subjecting them to extreme stain and load. In today’s competitive market scenario, it of utmost importance to minimize down time in commercial vehicles as it directly corresponds to loss in business which leads to customer dissatisfaction. It is therefore essential to optimize and select the right material for each component in the bogie suspension system. This paper deals with the material selection and testing of one such component - Bogie Wear Pad. The bogie wear pad undergoes sliding friction throughout its lifetime during loading and unloading of bogie suspension. Three different materials are selected and their wear is measured under the same conditions of loading.
Technical Paper

Front Axle Kingpin Bush - Evaluation of Wear in Operating Conditions

2021-09-22
2021-26-0473
In automobiles, front axle assembly is a main load bearing member and houses steering linkages. Front axle assembly has two main parts namely axle beam and axle arm, interconnected by a kingpin. This kingpin allows the rotation of axle arm during steering events. To avoid metal to metal contact between axle arm and kingpin, bushes are housed on the top and bottom half of the axle arm & in axle beam. Due to radial load and steering rotation, as a weak member, bushes will wear out faster. This affects the proper functioning of steering mechanism. Hence, the bushes need to be evaluated prior to its implementation in vehicle. In general, bushes are evaluated using Pin-On-Disc test as a comparative study, but it does not simulate exact boundary conditions as in vehicle. Next option is vehicle level validation but leads to more testing time and cost. Hence, as an optimized solution, the same vehicle operating conditions can be replicated in component level testing.
Technical Paper

Test Methodology Development on Multi-Purpose Bracket for HCV Application

2021-09-22
2021-26-0467
In the modern automotive sector, durability and reliability are two terms of utmost importance and relevance. The ever improving standards and cut throat competition has led to customers expecting highly reliable products at low costs. Any product that fails within its useful life leads to customer dissatisfaction and affects the OEM’s reputation. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. Multipurpose bracket is one of the most important and critical aggregate in the vehicle assembly. It encompasses various mounting components such as FUPD bracket, steering mounting bracket, front spring front bracket, cab mount bracket, cab tilt cylinder mounting bracket, front cross member, footstep bracket and bumper. All these components experience various degrees of vibration and fatigue during its running period.
Technical Paper

Accelerated Combined Stress Testing of Automotive Head Lamp Relays

2017-03-28
2017-01-0275
As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
Technical Paper

Real Time Simulation of Various Loads and Validation of Radiator CAC Assembly Used in Commercial Vehicle Engines

2023-05-25
2023-28-1337
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues.
Technical Paper

An Integrated Test Facility for Suspension Dampers of Commercial Vehicle

2018-04-03
2018-01-1383
In the present scenario, delivering the right product at the right time is very crucial in automotive sector to grab the competitive advantage. In the development stage, validation process devours most of the product development time. This paper focuses on reducing the validation time for damper (shock absorber) variants which is a vital component in commercial vehicle suspension system. New test facility is designed for both performance test and endurance testing of six samples simultaneously. In addition, it provides force trend monitoring during the validation which increases the efficiency of test with an enhanced control system. This new facility is also designed to provide side loading capability for individual dampers in addition to the conventional axial loading. The key parameter during validation is control of damper seal temperature within the range of 70-90°C. A cooling circuit is designed to provide an efficient temperature control by re-circulating cold water.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Technical Paper

Reliability Testing: Predictor Effect Analysis on Engine Mounts

2015-09-29
2015-01-2757
The Indian automotive sector is experiencing a major shift, focusing predominantly towards the levels of quality, reliability and comfort delivered to the customer. Since the entry of global players into the market, there is a rising demand for timely product launches with utmost priority to reliability. In any vehicle, engine isolation systems play a critical role in isolating the engine vibrations from the vehicle chassis. This project details on how testing can aid in reducing the launch time as well as estimating the reliability of the component when used in a different application/vehicle. It proposes a methodology to formulate a life model for the engine mount considering various combinations of predictor parameters affecting its performance over its design life. In order to maintain good correlation with the field (which considers the loading pattern and the environmental factors), warranty data was analyzed and the predictors were chosen appropriately.
Technical Paper

Understanding the Complexities and Validation of Exhaust System Components for New Emission Requirement with Thermal Load and Multi-Axis Vibration

2024-01-16
2024-26-0330
The new emission requirement norms in India calls for a robust Exhaust and After Treatment System (EATS) in automobiles. Its main purpose is to reduce the emission of harmful pollutants into the environment. EATS have a series of components that cleans the diesel exhaust emitted by the engine prior to releasing it through the tailpipe to the outside air. All the EATS components must undergo stringent testing protocol prior to its implementation in vehicle. During the exhaust treatment process, a very high temperature of about 550°C is produced in the EATS system. Hence, the effect of this higher temperature needs to be considered for validation. Moreover, the components will undergo multi-axial vibration in real road conditions which also need to be simulated during validation. In addition, engine vibrations are directly transmitted through a flex bellow to EATS system. These vibrations need to be captured and simulated in component level testing.
Technical Paper

Accelerated Lab Test Facility for NRS Leaf Spring Bracket for HCV Application

2024-01-16
2024-26-0344
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper tails on developing an accelerated lab test methodology for NRS leaf spring bracket by simulating field failure. Initially, potential failure causes for spring bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the damage on the spring bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
Journal Article

Accelerated Lab Test Methodology for Steering Gearbox Bracket Using Fatigue Damage and Reliability Correlation

2017-04-11
2017-01-9177
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
X