Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Characterization of Brake Creep Groan Vibrations

2020-09-30
2020-01-1505
Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior.
Technical Paper

Experimental Investigation of Low-Frequency Vibration Patterns in Automotive Disk Brake Systems: Utilization Study for Modal Simulation Methods

2018-06-13
2018-01-1513
Increasing demands on automotive comfort as well as diminishing vehicle noise levels draw new attention towards low-frequency vibration and noise issues of disk brake systems such as creep groan and moan. In view of this problem, the experimental investigation of relevant phenomena is within the scope of this article. The related experiments concerning two different setups have been performed at a drum driven suspension and brake test rig. Both assemblies consisted of a front axle corner including all parts of the integrated brake system. In order to gain understanding of characteristic triggering mechanisms and fundamental subsystem interactions, and moreover, to verify the suitability of modal methods for simulative evaluations of creep groan or moan, specifically elaborated Operating Deflection Shape (ODS) techniques have been applied. Via analyses of four different creep groan emergences, global stick-slip cycles between disk and pads are revealed.
Technical Paper

Application Limits of the Complex Eigenvalue Analysis for Low-Frequency Vibrations of Disk Brake Systems

2017-09-17
2017-01-2494
Complex Eigenvalue Analysis (CEA) is widely established as a mid- to high-frequency squeal simulation tool for automobile brake development. As low-frequency phenomena like creep groan or moan become increasingly important and appropriate time-domain methods are presently immature and expensive, some related questions arise: Is it reasonable to apply a CEA method for low-frequency brake vibrations? Which conditions in general have to be fulfilled to evaluate a disk brake system’s noise, vibration and harshness (NVH) behavior by the use of CEA simulation methods? Therefore, a breakdown of the mathematical CEA basis is performed and its linear, quasi-static approach is analyzed. The mode coupling type of instability, a common explanation model for squeal, is compared with the expected real world behavior of creep groan and moan phenomena.
X