Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sound Source Identification of In-Plane Squeal of Disc Brakes Using Array Microphones and Its Verification by Acoustic Simulation

2023-11-05
2023-01-1869
As the vehicle electrification progresses and the demand for acoustic comfort increases, the NVH performance of brakes becomes more important theme. In-plane squeal of disc brake is one of phenomena that is difficult to countermeasure. In this study, we used array microphones to search for sound sources of in-plane squeal in order to elucidate the mechanism. The Microphones were set in the out-of-plane direction and the lateral direction of a disc in brake components on a full-sized dynamometer. In the vibration mode in which in-plane stretch vibration was dominant, the sparse and dense parts showed high sound pressure. 3D laser vibrometer was used to check displacements of the disc, and the result indicated a possibility that the sparse and dense parts could vibrate in the out-of-plane direction and generate the sound. Then, complex eigenvalue analysis (CEA) and acoustic simulation were conducted to validate the experimental results.
Technical Paper

Experimental Study of Disc In-Plane Mode which Induced Brake Squeal

2017-09-17
2017-01-2484
Previous studies have shown that the disc vibration mode during braking noise is not always the same and there are some types of mode. Until now, disc brake noise studies are reported regarding out of plane noise primarily, and there are many noise countermeasure methods. On the other hand, there is short research history of “Inplane mode noise” which disc vibrates to circumstance direction with extension and contraction movement. Therefore, there are few studies which are explained the noise mechanism in detail in the view point of pad. In this report, we discuss energy which flows into pad surface at inplane noise braking and focused friction force variation by the surface pressure change especially. The inflow energy was calculated by the pad’s displacement of disc rotating direction(ΔX) and pad thickness variation(Δh) which is acquired by 3D scanning laser Doppler measurement system. This technique was made in reference to the past research.
X