Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Economic and Climate Advantages: Secondary-Loop Motor Vehicle Air Conditioners (MACs)

2018-05-30
2018-37-0030
This paper and presentation compare the thermal, economic and climate performance of existing direct expansion motor vehicle air conditioners (DX-MACs) using hydrofluorocarbon (HFC)-134a (global warming potential (GWP) =1300) with secondary-loop MACs (SL-MACs) using hydrofluoroolefin (HFO)-1234yf (GWP < 1) and HFC-152a (GWP = 138), both of which satisfy the European Union (EU) and Japan F-gas regulations and are listed as acceptable by the US Environmental Protection Agency (US EPA). In addition to a technical review of the SL-MAC system, the paper includes a part-by-part system manufacturing cost comparison and itemized ownership cost comparison taking into account fuel savings and reduced maintenance. The paper is timely because the Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer now requires both developed and developing countries to phase down the production and consumption of HFCs and at the same time encourages increases in energy efficiency.
Technical Paper

Comparative Manufacturing and Ownership Cost Estimates for Secondary Loop Mobile Air Conditioning Systems (SL-MACs)

2017-03-28
2017-01-0173
This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
X