Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

The Reduction of Mechanical and Thermal Loads in a High-Speed HD Diesel Engine Using Miller Cycle with Late Intake Valve Closing

2017-03-28
2017-01-0637
Mechanical load and thermal load are the two main barriers limiting the engine power output of heavy duty (HD) diesel engines. Usually, the peak cylinder pressure could be reduced by retarding combustion phasing while introducing the drawback of higher thermal load and exhaust temperature. In this paper, Miller cycle with late intake valve closing was investigated at high speed high load condition (77 kW/L) on a single cylinder HD diesel engine. The results showed the simultaneous reduction of mechanical and thermal loads. In the meanwhile, higher boosting pressure was required to compensate the Miller loss of the intake charge during intake and compression process. The combustion temperature, cylinder pressure, exhaust temperature and NOx emission were reduced significantly with Miller cycle at the operating condition. Furthermore, the combustion process, smoke number and fuel consumption were analysed.
Technical Paper

Effect of the Depth of Valve Avoiding Pit on Combustion Process for a Heavy Duty Diesel Engine

2017-03-28
2017-01-0725
In diesel engines, valve avoiding pit (VAP) is often designed on the top of the piston in order to avoid the interference between the valves and the piston during the engine operation. With the continued application of the downsized or high power density diesel engines, the depth of VAP has to be further deepened due to increased valve lift for more air flow into and out of the cylinder and decreased piston top clearance for less HC/CO and soot emissions. The more and more deepening of VAP changes the combustion chamber geometry, the top clearance height and the injector relative position to the piston crown. In this paper, a 3-D in-cylinder combustion model was used for a heavy duty diesel engine to investigate the effects of the depth of VAP on combustion process and emissions. Five depths of VAP were designed in this study. In order to eliminate the influence of compression ratio, the piston clearance height was adjusted for each VAP depth to keep the same compression ratio.
X