Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

CAE Analysis and Auralization of Driveline Clunk NVH

2021-08-31
2021-01-1067
Noise and vibration evaluation of driveline clunk can be challenging as it is the result of driver input conditions and is transient in nature. As with many noise and vibration challenges, the use of computer-aided engineering (CAE) simulation is useful as it allows for detailed study of the phenomenon and prediction of potential improvements. A hybrid approach of physical test-based measurements and CAE analysis can be used to leverage the advantages of CAE in a comprehensive evaluation including the total vehicle noise, vibration, and harshness (NVH) performance. In this paper we present work performed to facilitate engineering evaluations of driveline clunk using both measured test and CAE simulation data. We explain how we used measured test data to inform the CAE analysis, how the simulation approached modelling of the transient clunk event, and how the measured data was used to provide contextual sound for realistic evaluation of the CAE output as heard by the passengers.
Technical Paper

Golf Cart Noise and Vibration Troubleshooting

2017-06-05
2017-01-1891
Similar to the automotive industry, the expectations from customers for the noise and vibration performance of personal vehicles such as golf carts, ATV’s, and side-by-side vehicles has continued to evolve. Not only do customers expect these types of vehicles to be more refined and to have acoustic signatures that match the overall performance capabilities of the vehicle, but marketing efforts continue to focus on product differentiators which can include the acoustic and vibration performance. Due to this increased demand for acoustic and vibration performance, additional NVH efforts are often required to meet these expectations. This paper provides a sample of some of the efforts that have occurred to further refine and develop the noise and vibration signature for golf carts.
Technical Paper

Tire Noise Synthesis from Test Stand Measurements and CAE Full Vehicle Models

2024-06-12
2024-01-2951
Tire/Road noise is a dominant contribution to a vehicle interior noise and requires significant engineering resources during vehicle development. A process has been developed to support automotive OEMs with road noise engineering during vehicle design and development which has test as its basis but takes advantage of simulation to virtually accelerate road noise improvement. The process uses airborne noise sources measured on a single tire installed on a test stand. The measured sources are then combined with vehicle level transfer functions calculated using a Statistical Energy Analysis (SEA) model to predict the sound at the driver ears. The process can be applied from the early stages of a vehicle development program and allows the evaluation of vehicle road noise performance as perceived by the driver long before the first prototype is available. This process is also extensible to other types of sources and loads impacting vehicle interior acoustics.
Technical Paper

Virtual Powertrain Swap for Interactive NVH and Sound Quality Evaluation

2018-06-13
2018-01-1476
Powertrain NVH and Powertrain Sound Quality requirements are among the key attributes to meet when developing new engines or vehicles. Source-Path-Contribution (SPC) solutions are commonly used to support the vehicle design and development. They allow to quantify the relative contributions of the different excitation sources, whether airborne or structure-borne, and the transfer paths to the noise and vibration measured at the receiver locations. When performed in time domain, SPC analysis is also a very effective tool to evaluate interactively the powertrain Sound Quality and how it can be affected by design changes. In this paper, we present a joint project performed by B&K Global Engineering Services together with Subaru where the team leveraged SPC models for powertrain noise of existing vehicles to create a new virtual vehicle assembly when the powertrain from the first vehicle is installed in the body of the second vehicle.
X