Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

An Automatic Emergency Braking System for Collision Avoidance Assist of Multi-Trailer Vehicle Based on Model Prediction Control

2021-04-06
2021-01-0117
The autonomous collision avoidance problem for multi-trailer vehicle maneuvering is investigated in this paper. Different from conventional vehicle systems that contain one single moving part or multi-parts that can be considered as one rigid body, the interconnection between the tractor and each trailer, and interactions between trailers in the multi-trailer system introduce a high dimensional and highly complex dynamic system for the controller design. The external disturbance and parametric uncertainties further increase the difficulty in system identification and state space formulation. To implement a real time control system for various scenarios where the locations and states of the obstacles are not known beforehand, a supervisory algorithm is designed to convert the control problem to a discrete event system. The model predictive control (MPC) using limited lookahead policy is employed in the proposed algorithm.
Technical Paper

Design and Assessment of an Antibacklash Single Roller Enveloping Hourglass Worm Gear

2019-04-02
2019-01-1071
A theoretical and experimental analysis is conducted to study the influences of key design parameters on the backlash of the roller enveloping hourglass worm gear. Two equations, the gear engagement equation and the tooth profile equation have been derived and represented in terms of four key parameters arising from the backlash of the worm gear by applying the gear meshing theory. Based on the derived equations, an efficient approach for reducing or eliminating the backlash of such a novel warm gear is developed. Specifically, the influences of center distance, roller radius, transmission ratio, and the radius of base circle on the contact curves and the tooth profile have been systematically investigated through numerical analysis, modeling and simulation. Next, a roller enveloping hourglass worm gear is manufactured and used for assessing the efficiency of the developed method in reducing and/or eliminating the backlash.
Technical Paper

Theoretical Modeling of the Mechanical Degradation of Polymer Composites due to Moisture/Water Absorption and Damage Progression

2019-03-19
2019-01-1376
The moisture/water absorption and microvoids/cracks progression are two well-understood mechanisms that have significant degradation effects on the mechanical properties/behaviors of the polymer-based composites. To theoretically investigate the effects of above two mechanisms, we develop a simple fiber reinforced polymer composites model by employing the internal state variable (ISV) theory. The water content and the anisotropically distributed damage of the composites are considered as two ISVs (the water content is described by a scalar variable and the damage is defined as a second order tensor) whose histories are governed by two specific physically-based evolution equations. The proposed model can be easily cast into a general theoretical framework to capture more polymer composites behaviors such as viscoelasticity, viscoplasticity and the thermal effect.
Technical Paper

Design and Prototyping of Cleaning Systems for Cylinder Head and Engine Block Conveying Lines

2018-04-03
2018-01-1387
This paper presents the design of two cleaning systems following systems engineering design approach. An in situ cleaning system was designed for removing engine oil stains and metal swarf and shavings that adhere to rollers of conveying lines which convey cylinder head as well as other heavy engine components. The other system was to clear and collect metal debris accumulated in the grooves of an engine block internal assembly line. Prototypes were fabricated for the designed cleaning equipment for further testing and assessment. In the system engineering design process, preliminary, intermediate, and detailed design were conducted following an identification of the design problem, within that process a sequence of tasks such as synthesis, analysis, prototyping, and assessment were completed.
Technical Paper

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2017-09-19
2017-01-2130
Oven and flame tests were designed and conducted to evaluate the heat resistance of a ceramic coating material, Cerakote C-7700Q, and evaluate its viability to replace the intumescent coating as one painting material for helicopter engine cowlings. The test results showed that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. This study explained why serious appearance defects occurred in the inner skin of the engine cowling when the aircraft is hovering and suggested that one most time- and cost-effective solution is to repaint the current engine cowlings with a new three coating system of Cerakote, surface protection HS7072-622, and intumescent paint as a fireproof lacquer.
X