Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Optimization of Body-in-White Weld Parameters for DP590 and EDD Material Combination

2021-10-01
2021-28-0215
Body in White (BIW) of an automobile serves as the shell, on which all the components that make up a vehicle, are mounted. The BIW is an assembly of press formed sheet metal components. The sheet metal composition of each component varies based on the form and functionality requirement of that component. The resulting assembly has multiple weld joineries with dissimilar compositions. The weld integrity of the joineries is crucial in maintaining the geometrical and structural integrity of the BIW. The primary welding method used in BIW assembly is Resistance Spot Welding (RSW). The quality of the weld is an outcome of a combination of multiple weld parameters. These parameters are majorly estimated based on the joinery thicknesses and material combinations. Multiple welding and testing iterations are done to fine tune the parameters for an optimum weld joinery. This is a very tedious process which increases the process time of a BIW assembly.
Technical Paper

Impact of Weld Fixture Clamp Force Variation on Dimensional Integrity in Low Volume Body-in-White Build

2021-10-01
2021-28-0216
Body in White (BIW) is an assembly of multiple sheet metal components. BIW is a major contributor to the dimensional and structural integrity of an automobile. The accuracy and precision of the BIW is influenced by multiple factors involved in the manufacturing lifecycle of the BIW, of which component development and assembly strategy are the most significant contributors. Weld fixtures are the tools used for accurately locating and holding, sheet metal components for joining. The primary motive of the locating and holding strategy is to arrest all degrees of freedom of a component. Geometric repeatability of the components is also of high importance. Component location is typically achieved by standardized locator pins that maintain the Principal Location Points (PLP). Mylars provided at Master Control Patches (MCP) ensure the resting and clamping of the component. Low volume BIW builds employ non-automated clamping methodologies, either with manual clamps or toggle clamps.
Technical Paper

An Alternate CED Process for Low Volume BIW Manufacturing with Single Stage Vertical Dipping

2021-10-01
2021-28-0227
Body in White (BIW) is a major assembly in an automobile. It is made of sheet metal components that are welded together by Resistance Spot Welding (RSW). This bare metal assembly is put through a process called Cathodic Electrodeposition (CED) for an anti-corrosive coat that lasts for the entire lifetime of the automobile. The CED process is a complex multi-stage process which includes rinse cycles, phosphate cycles, coat cycles and baking. These multistage setups are custom built to the automobile manufacturer’s requirement based on their product geometries and production volumes. Due to the high cost of establishment, these are typically restricted to production plants, except for smaller single stage setups. Smaller CED setups for component level coating with single stage vertical dipping stations can serve as a potential alternative to low volume builds and prototype builds.
Technical Paper

BIW Resistance Spot Weld Parameter Standardization through Parameter Optimization across Various Sheet Metal Panel Combinations

2018-07-09
2018-28-0034
Body in White (BIW) is one of the critical aggregates of an automobile. Establishing the quality parameters during body manufacturing is essential to achieve robust BIW structure. Spot weld integrity and dimensional accuracy are the two major quality parameters of a BIW. Weld integrity plays an important role in achieving dimensional accuracy and structural stability. Various combinations of sheet metals are joined together to form a BIW structure. Spot weld parameter selection is one of the critical activity and needs to be programmed for the various combinations of sheet metals. Weld parameter for the various combinations are calculated with the resistance of the joining sheet metals thicknesses. The calculated parameters are validated with the coupon test (or) peel test and it requires several iterations to establish weld integrity of the different combinations and the selected parameters get registered in the weld controller.
Technical Paper

Implementation of Lean Approaches in Proto Body Build to Improve Productivity and Flexibility

2017-07-10
2017-28-1965
Lean approaches are being implemented in various manufacturing facilities across the globe. The application of lean approaches are extended to Body proto build shop to maximize the efficiency of the shop with lesser floor space and optimized equipment. Weld fixture, Weld equipment and assembly tools are the major tools required essentially for proto BIW assembly. This paper explains how the Weld equipment planning was carried out with lean approaches and implemented effectively in proto body assembly shop. The implemented lean concepts are compared with Italy and Japanese proto body build makers to validate the frugal planning of the facility for the said intent. The implemented facility is capable of producing more than a model at a time. Weld parameter selection for weld gun, gun movement to the fixture with minimized change over time and movable weld gun gantry are the lean approaches implemented.
X