Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Comparison of Active Front Wheel Steering and Differential Braking for Yaw/Roll Stability Enhancement of a Coach

2018-04-03
2018-01-0820
Both active front wheel steering (AFS) and differential braking control (DBC) can improve the vehicle handling and stability. In this article, an AFS strategy and a DBC strategy are proposed and compared. The strategies are as follows: A yaw instability judging module and a rollover instability judging module are put forward to determine whether the coach is in a linear state and whether the additional torque/angle module should be actuated. The additional torque module based on linear quadratic regulator (LQR) and the additional steering wheel angle module based on adaptive proportion integral differential (PID) fuzzy controller are designed to make the actual yaw rate and sideslip angle track the reference yaw rate and sideslip angle. Under some typical driving conditions such as sinusoidal, J-turning, crosswind, and straight-line brake maneuver on the μ-split road, simulation tests are carried out for the coach with no control, DBC strategy, and AFS control, respectively.
Technical Paper

A Fault-Tolerant Control Method for 4WIS/4WID Electric Vehicles Based on Reconfigurable Control Allocation

2018-04-03
2018-01-0560
This paper presents a fault-tolerant control (FTC) method for four-wheel independently driven and steered (4WIS/4WID) electric vehicles based on a reconfigurable control allocation to increase the flexibility for vehicle control and improve the safety of vehicle after the steering actuator fails. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle steering condition, detects and diagnoses actuator failures; 2) an upper controller that computes the generalized forces/moments to track the desired vehicle motion and trajectory; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels. The FTC approach based on the reconfigurable control allocation reallocates the generalized forces/moments among healthy steering actuators and driving motors once the actuator failures is detected.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
X