Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Contributiuon Analysis for Ride Comfort Evaluations

2023-05-08
2023-01-1144
In the current changing noise, vibration, and harshness (NVH) landscape, there is an increased amount of collaboration between NVH engineers and other attribute engineering groups to solve complex issues. One of these complex issues is ride comfort. An increasing amount of ride comfort development is happening between NVH and ride and handling (R&H) engineers. To apply a NVH process to a R&H phenomenon, it is important to ensure that both the transducer selection as well as analysis method will be applicable over the frequency range of interest. Specifically for ride comfort development, the validation of the use of strain gauges and accelerometers along with source path contribution analysis, or transfer path analysis, is key to bridging the gap between NVH and R&H.
Technical Paper

N&V Performance of GFR Composite Powertrain Brackets Using Vehicle Simulation Models

2023-05-08
2023-01-1080
Vehicle weight reduction is important to improve the fuel mileage of Internal Combustion Engine (ICE) vehicles and to extend the range of Electric Vehicles (EVs). Glass Fiber Reinforced (GFR) Composite (Polyamide) brackets provide significant weight reductions at a competitive part price. Traditionally, metal brackets are designed to surpass a target natural frequency and static stiffness. Composite brackets are inherently less stiff and have lower natural frequencies. However, composite brackets also have higher material damping than metal brackets, and good isolation performance can be achieved. The key to integrating composite brackets into the vehicle design is to perform adequate analysis to ensure that the noise and vibration performance at the vehicle level meets expectations. In this paper, case studies are presented for two different vehicles – a Clevis bracket for an IC Engine vehicle, and an electric motor mount bracket.
Technical Paper

Utilizing A Hybrid Engineering Approach for NVH Drive Evaluations in Virtual Prototypes

2022-06-15
2022-01-0980
As pressures mount to remove physical prototyping from the vehicle development process, there is a growing need for subjective evaluations of virtual prototypes. Virtually assessing NVH vehicle targets and using driving simulators to make those early critical design decisions is becoming a larger part of the NVH engineering process. Today this is only possible if you put a driving simulator at the center of your development process. Being able to drive and evaluate both test and simulation results simultaneously in a simulator allows engineering teams to leverage a hybrid engineering approach. By starting with measured on-road data from a physical vehicle, engineers can build virtual prototypes. By using this hybrid engineering process to incorporate CAE and test data together an engineer can create a virtual vehicle model with the desired NVH characteristics as a physical vehicle.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Technical Paper

Augmenting Vehicle Production Audit with Objective Data and Sound Quality Metrics to Improve Customer Experience in a Changing Automotive Landscape

2019-06-05
2019-01-1531
Vehicle manufacturers face increasing challenges in auditing the build quality of their vehicles while considering increasing consumer demands regarding NVH performance. This effect is compounded with the rise in electric and hybrid vehicles. The ability to audit vehicles for a variety of noise types is becoming increasingly important; these include powertrain noise, road noise, and wind noise. An automated measurement system was developed with specific algorithms and sound quality metrics to not only audit vehicle production quality but to add objective data, pass-fail criteria, and trend analysis.
Technical Paper

Sound Quality Target Development and Cascading for a Tractor

2017-06-05
2017-01-1832
Typical approaches to regulating sound performance of vehicles and products rely upon A-weighted sound pressure level or sound power level. It is well known that these parameters do not provide a complete picture of the customer’s perception of the product and may mislead engineering efforts for product improvement. A leading manufacturer of agricultural equipment set out to implement a process to include sound quality targets in its product engineering cycle. First, meaningful vehicle level targets were set for a tractor by conducting extensive jury evaluation testing and by using objective metrics that represent the customer’s subjective preference for sound. Sensitivity studies (“what-if” games) were then conducted, using the predicted sound quality (SQ) index as validation metric, to define the impact on the SQ performance of different noise components (frequency ranges, tones, transients).
Technical Paper

Noise and Vibration Development for Adapting a Conventional Vehicle Platform for an Electric Powertrain

2013-05-13
2013-01-2003
With the current focus of the automotive industry on improving fuel consumption, it is becoming increasingly more common to adapt current/existing vehicle platforms for integration with electric powertrains. This integration can have an impact on many areas of the vehicle development process, including noise and vibration performance. Alongside the understood benefits to fuel economy, electric powertrains can present many unique noise and vibration related development challenges which require specific attention, particularly for cases in which a conventional gasoline engine vehicle platform is used as a surrogate for the electric powertrain. In this paper, several of the potential noise and vibration development activities will be highlighted, including discussions on powertrain vibration, accessory noise and vibration, and acoustic package material development to deliver a refined noise and vibration experience to the customer.
X