Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Investigating Route Gradient and Thermal Demand on Hydrogen Fuel Cell Electric Bus Energy Consumption

2024-04-09
2024-01-2176
In 2022 in the UK, the transport sector was the largest single contributing sector to greenhouse gas emissions, responsible 34% of all territorial carbon dioxide emissions [1]. In the UK there is growing uptake in zero emission powertrain technologies, with the most promising variants based on battery electric or hydrogen fuel cell electric configurations. Given the limited number of fuel cell electric buses currently in operation in Europe, vehicle models and simulations are one of the few methods available to estimate energy consumption and provide the necessary increased confidence in operating range. This paper investigates the impact of route characteristics, thermal demand and coefficient of performance of different heat source configurations on the operational energy consumption of fuel cell electric buses. Using a MATLAB/Simulink model, the total energy demand of a vehicle operating in different route/elevation profiles is considered.
Technical Paper

Development of Next Generation Fuel Cell Bus: Investigation of Configuration Impact and Control Strategy Development

2022-03-29
2022-01-0691
The emergence of fuel cell powertrains has opened up new pathways to net-zero greenhouse gas emissions across a number of sectors, including public transport. However, while these technologies are gaining momentum, they are mostly still in their infancy with a range of fundamental challenges which still need to be addressed. The typical configuration deployed in bus applications requires integration with other fast-response power sources, e.g., battery and/or ultra-capacitor, to effectively manage power delivery. However, implementation of such hybrid energy storage systems (ESSs) complicates the design and control of the vehicle powertrains. In this work, a concept fuel cell bus vehicle powertrain configuration has been constructed first using Matlab/Simulink which can be used to explore the impact of various ESS hybridization strategies, and their effectiveness in power management.
Technical Paper

Determining the Distribution of Battery Electric and Fuel Cell Electric Buses in a Metropolitan Public Transport Network

2022-03-29
2022-01-0675
The need to decrease greenhouse gases emissions in the transport sector has resulted in the requirement for zero emission technologies in city centre bus fleets. Currently, battery electric buses are the most common choice, with both single deck and double deck vehicles in regular use. However, long-term operational capabilities are still largely unknown and unreported. Hydrogen fuel cell electric buses are an emerging zero emission technology that have the potential to complement a battery electric bus fleet where the duty cycle is challenging for current battery electric configurations. This paper compares the difference in energy consumption, for a given chassis configuration, passenger load, and heating requirement, of generic battery electric and hydrogen fuel cell electric buses operating in a typical UK city environment.
Technical Paper

Hydrogen Fuel Cell Buses: Modelling and Analysing Suitability from an Operational and Environmental Perspective

2020-04-14
2020-01-1172
In response to the need to decrease greenhouse gas emissions, the current trend in the transport sector is a greater focus on alternative powertrains. More recent air quality concerns have seen controlled zero emission zones within urban areas. As a result, there is growing interest in hydrogen fuel cell electric buses (FCEBs) as a zero local emission vehicle with superior range, operational flexibility and refuelling time than other clean alternatives e.g. battery electric buses (BEBs). This paper details the performance and suitability analysis of a proposed Wrightbus FCEB, using a quasistatic backwards-facing Simulink powertrain model. The model is validated against existing prototype vehicle data (Mk1), allowing it to be further leveraged for predictions of an advanced future production vehicle (Mk2) with next generation motors and fuel cell stack.
Technical Paper

Optimal Control Strategy for the Next Generation Range Extended Electric Bus

2020-04-14
2020-01-0844
Electric and Hybrid-Electric buses have become a major vehicle platform for demonstrating the advantages and capabilities of electrification in heavy duty vehicles. This type of vehicle can be powered from several different sources that each have several unique operating characteristics and performance requirements that necessitate novel solutions. In this paper, a novel optimal control strategy based on the next generation range-extended electric bus (REEB) has been developed. Control strategies play an essential role in realizing the full potential of electric buses and through careful implementation can increase their effectiveness at displacing conventional internal-combustion powered buses and thus, reducing global fuel consumption and emissions. Initially, a control-oriented powertrain model was developed in Matlab/Simulink.
Technical Paper

Advanced Driver-Assistance Systems for City Bus Applications

2020-04-14
2020-01-1208
The bus sector is currently lagging behind when it comes to implementing autonomous systems for improved vehicle safety. However, in cities such as London, public transport strategies are changing, with requirements being made for advanced driver-assistance systems (ADAS) on buses. This study discusses the adoption of ADAS systems within the bus sector. A review of the on-road ADAS bus trials shows that passive forward collision warning (FCW) and intelligent speed assistance (ISA) systems have been successful in reducing the number of imminent pedestrian/vehicle collision events and improving speed limit compliance, respectively. Bus accident statistics for Great Britain have shown that pedestrians account for 82% of all fatalities, with three quarters occurring with frontal bus impacts.
Technical Paper

Lap Time Simulation Tool for the Development of an Electric Formula Student Car

2019-04-02
2019-01-0163
This work details the development of a lap time simulation (LTS) tool for use by Queen’s University Belfast in the Formula Student UK competition. The tool provides an adaptable, user-friendly virtual test environment for the development of the team’s first electric vehicle. A vehicle model was created within Simulink, and a series of events simulated to generate the performance envelope of the car in the form of maximum combined lateral/longitudinal accelerations against velocity (ggv diagram). A four-wheeled vehicle including load transfer was modelled, capturing shifts in traction between each tire, which can influence performance in vehicles where the total tractive power is split between individual wheel motors. The acceleration limits in the ggv diagram were used to simulate the acceleration and endurance events at Formula Student. These events were simulated using a MATLAB code considering a point mass, quasi-steady state model with a perfect driver.
Technical Paper

Modelling and Control of a Hybrid Urban Bus

2019-04-02
2019-01-0354
This paper describes the development and on-vehicle validation testing of next generation parallel hybrid electric powertrain technology for use in urban buses. A forward-facing MATLAB/Simulink powertrain model was used to develop a rule-based deterministic control system for a post-transmission parallel hybrid urban bus. The control strategy targeted areas where conventional powertrains are typically less efficient, focused on improving fuel economy and emissions without boosting vehicle performance. Stored electrical energy is deployed to assist the IC engine system leading to an overall reduction in fuel consumption while maintaining vehicle performance at a level comparable with baseline conventional IC engine operation.
Journal Article

Development of a Vehicle Model Architecture to Improve Modeling Flexibility

2017-03-28
2017-01-1138
In this paper a dynamic, modular, 1-D vehicle model architecture is presented which seeks to enhance modelling flexibility and can be rapidly adapted to new vehicle concepts, including hybrid configurations. Interdependencies between model sub-systems are minimized. Each subsystem of the vehicle model follows a standardized signal architecture allowing subsystems to be developed, tested and validated separately from the main model and easily reintegrated. Standard dynamic equations are used to calculate the rotational speed of the desired driveline component within each subsystem i.e. dynamic calculations are carried out with respect to the component of interest. Sample simulations are presented for isolated and integrated components to demonstrate flexibility. Two vehicle test cases are presented.
X