Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
Technical Paper

Research and Development of Microwave Plasma Combustion Engine (Part I: Concept of Plasma Combustion and Plasma Generation Technique)

2009-04-20
2009-01-1050
This study aims to develop innovative plasma combustion system to improve fuel economy and achieve higher efficiency without any modification of current engine configuration. A new plasma generation technique, that used a combination of spark discharge and microwave, was proposed. This technique was applied to gasoline engine as an ignition source, which was intensive and stable even in lean condition. In this technique, firstly, small plasma source was generated by spark discharge. Secondly, microwave was radiated to the plasma source to expand the plasma. The microwave power was absorbed by the plasma source and large non-thermal plasma was formed. In non-thermal plasma, the electron temperature was high and the gas temperature was low. Then many OH radicals were generated in the plasma. The frequency of the microwave was 2.45 GHz because we used a magnetron for microwave oven. Magnetrons for microwave oven were high efficiency and reasonable.
X