Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

A New Take on Porous Medium Approach for Modelling Monoliths and Other Multiple Channel Devices

2019-09-09
2019-24-0049
The porous medium approach is widely used to represent high-resistance devices, such as catalysts, filters or heat exchangers. Because of its computational efficiency, it is invaluable when flow losses need to be predicted on a system level. One drawback of using the porous medium approach is the loss of detailed information downstream of the device. Correct evaluation of the turbulence downstream affects the calculation of the related properties, e.g. heat and mass transfer. The novel approach proposed in the current study is based on a modified distribution of the resistance across the porous medium, which allows to account for the single jets developing in the small channels, showing an improved prediction of the turbulence at the exit of the device, while keeping the low computational demand of the porous medium approach. The benefits and limitations of the current approach are discussed and presented by comparing the results with different numerical approaches and experiments.
Journal Article

Computational Fluid Dynamics Study of Gaseous Ammonia Mixing in an Exhaust Pipe Using Static Mixers

2017-03-28
2017-01-1018
Ever growing traffic has a detrimental effect on health and environment. In response to climate warming and health concerns, governments worldwide enforce more stringent emission standards. NOx emissions limits are some of the most challenging to meet using fuel-efficient lean-burn engines. The Selective Catalytic Reduction (SCR) is one consolidated NOx after-treatment technique using urea water solution (UWS) injection upstream of the catalytic converter. A recent development of SCR, using gaseous ammonia injection, reduces wall deposit formation and improves the cold-start efficiency. The mixing of gaseous ammonia with the exhaust gases is one of the key challenges that need to be overcome, as the effectiveness of the system is strongly dependent on the mixture uniformity at the inlet of the SCR catalyst.
X