Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

On the Prediction of Spray A End of Injection Phenomenon Using Conditional Source-Term Estimation

2020-04-14
2020-01-0779
In this study, the role of turbulence-chemistry interaction in diesel spray auto-ignition, flame stabilization and end of injection phenomena is investigated under engine relevant “Spray A” conditions. A recently developed diesel spray combustion modeling approach, Conditional Source-term Estimation (CSE-FGM), is coupled with Reynolds-averaged Navier-Stokes simulation (RANS) framework to study the details of spray combustion. The detailed chemistry mechanism is included through the Flamelet Generated Manifold (FGM) method. Both unsteady and steady flamelet solutions are included in the manifold to account for the auto-ignition process and the subsequent flame propagation in a diesel spray. Conditionally averaged chemical source terms are closed by the conditional scalars obtained in the CSE routine. Both non-reacting and reacting spray jets are computed over a wide range of Engine Combustion Network (ECN) diesel. “Spray A” conditions.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
X