Viewing 1 to 3 of 3
Technical Paper
Mark Stuhldreher, Youngki Kim, John Kargul, Andrew Moskalik, Daniel Barba
Abstract As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article
Paul Dekraker, Mark Stuhldreher, Youngki Kim
Abstract The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article
Youngki Kim, Tae-Kyung Lee, Zoran Filipi
Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Viewing 1 to 3 of 3