Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Journal Article

Data-Driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2023-04-11
2023-01-0291
Digital technologies are capable of making a significant contribution to improving large internal combustion engine technology. In particular, methods from the field of artificial intelligence are opening up new avenues. So-called “intelligent” engine components rely on advanced instrumentation and data analytics to create value-added data, which in turn can serve as the basis for applications such as condition monitoring, predictive maintenance and controls. For related components and systems, these data may also allow for novel condition monitoring approaches. This paper describes the use of value-added data from an intelligent diesel fuel injection valve that give detailed information about the injection process for real-time prediction of key combustion parameters such as indicated mean effective pressure, maximum cylinder pressure and combustion phasing.
Journal Article

Deep Generative Networks for Nondestructive Cylinder Liner Inspection in Large Internal Combustion Engines

2023-04-11
2023-01-0066
Digitalization offers a variety of promising tools for improving large internal combustion engine technology. This also includes the inspection of important engine components such as cylinder liners. Modern concepts for condition monitoring of the inner surfaces of cylinder liners are often based on indirect methods such as lubricating oil or vibration condition monitoring. However, a position-based inspection of roughness and lubrication properties of the liner surface is currently not possible during operation, nor is it feasible during engine standstill. For large engines in particular, the evaluation of surface properties currently requires disassembly and cutting of the inspected liner, followed by a sophisticated microscopic surface depth measurement. Although this process provides a high-resolution three-dimensional surface model, such measurement methods are destructive and costly.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Technical Paper

Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine

2017-03-28
2017-01-0559
Using natural gas as a fuel in internal combustion engines is a promising way to obtain efficient power generation with relatively low environmental impact. Dual fuel operation is especially interesting because it can combine the safety and reliability of the basic diesel concept with fuel flexibility. To deal with the greater number of degrees of freedom caused by the interaction of two fuels and combining different combustion regimes, it is imperative to use simulation methods in the development process to gain a better understanding of the combustion behavior. This paper presents current research into ignition and combustion of a premixed natural gas/air charge with a diesel pilot spray in a large bore diesel ignited gas engine with a focus on 3D-CFD simulation. Special attention was paid to injection and combustion. The highly transient behavior of the diesel injector especially at small injection quantities poses challenges to the numerical simulation of the spray.
X