Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Experimental Study on Combustion Characteristics of Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions

2018-04-03
2018-01-1140
Methane as an attractive alternative fuel offers the most potential in clean combustion and low CO2 emissions. In this work, combustion characteristics of methane/gasoline dual-fuel were investigated in a spark-ignited engine with port-injection of methane and direct-injection of gasoline, allowing for variations in methane addition and excess air coefficient. Engine experimental results showed that under low load conditions, as methane mass rate was raised, there was a promotion in methane/gasoline dual-fuel combustion, and this became more obvious at lean conditions. Similar observations were also obtained when the engine was operated at intermediate load conditions, but a prolonged combustion duration was found with the methane addition. Further analysis showed that the promotion of methane/gasoline dual-fuel combustion with methane addition mainly occurred in the early stage of combustion, especially for lean conditions.
Technical Paper

Effects of Multiple Parameters on Cyclic Variation of a SI Engine Fueled with 2-Methylfuran Gasoline Blends

2017-03-28
2017-01-0654
Combustion characteristics of neat 2-methylfuran (MF), 10% and 20% volumetric fraction 2-methylfuran gasoline blends were experimentally investigated in a single cylinder spark ignition engine, and the results were benchmarked against that of the research on octane number 97 neat gasoline. The investigation focused on the performance of cyclic variation of MF and its blends, and the effects of spark ignition timing, compression ratio, and exhaust gas recirculation (EGR) were studied. Experiments were conducted at the engine speed of 1500 rpm, and loads between 7 and 11 bar indicated mean effective pressure (IMEP) with using stoichiometric air-fuel ratio mixture. Index of the coefficient of variation of IMEP (COVIMEP) was used to evaluate the combustion stability of the tested fuels. The results show that neat MF and MF gasoline blended fuels have superior combustion stability compared with gasoline.
X