Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Novel Approach for the Impingement of AdBlue-Droplets based on Smooth Regime Transitions

2020-09-15
2020-01-2179
Further development of exhaust aftertreatment systems based on selective catalytic reduction (SCR) requires detailed knowledge of all involved physical and chemical processes. One major influence is the impingement of the injected urea water solution (UWS) droplets on the hot walls of the exhaust system. Due to the numerous influencing factors of this complex phenomenon, it is described by empirical impingement maps based on experimental investigations. Frequently, the impacting droplet is assigned to a single impingement regime (e.g. splash) according to surface temperature and a kinetic parameter (e.g. Bai-Gosman, Bai-ONERA, Kuhnke). A transitional range between regimes has been reported experimentally before, but was abandoned in most cases for model simplification reasons. Only rarely a smooth transition for a selected regime boundary was implemented.
Journal Article

Deposit Formation in SCR-Systems - Optical Investigations

2020-09-15
2020-01-2177
The permanently tightening emission regulations for nitrogen oxides (NOx) pollutants force further development of mobile exhaust aftertreatment systems with selective catalytic reduction (SCR). Of particular interest is the long-term reliability of SCR-systems with regard to unfavorable operating conditions, such as high injection rates of urea water solution (UWS) or low exhaust gas temperatures. Both may lead to the formation of solid deposits which decrease system efficiency by increasing backpressure and impairing ammonia formation. In order to study the most relevant processes of deposit formation, an optical box with heat resistant glass was designed. Three UWS injectors with different spray characteristics were used to study their influence on the deposit formation under a wide range of stationary and transient operating conditions. Infrared thermography was applied to observe spray-induced wall cooling, both below and above the Leidenfrost point.
Journal Article

A Fast Modeling Approach for the Numerical Prediction of Urea Deposit Formation

2020-04-14
2020-01-0358
The permanently tightening emission regulations for NOx pollutants force further development of automotive exhaust aftertreatment systems with selective catalytic reduction (SCR). Of particular interest is the long-term reliability of SCR systems with regard to unfavorable operating conditions, such as high injection rates of urea water solution (UWS) or a low exhaust gas temperature. Both of them may lead to formation of solid deposits which increase backpressure and impair ammonia uniformity. A fast modeling approach for numerical prediction of deposit formation in urea SCR systems is desired for optimization of system design. This paper presents a modified methodology for the modeling of deposit formation risk. A new determination of the initial footprint of the spray, where the deposit formation is inhibited, is proposed. The threshold values for the evaluation of the film transport were validated based on experimental results.
Technical Paper

Modeling Approach for a Wiremesh Substrate in CFD Simulation

2017-03-28
2017-01-0971
Experimental studies have shown that knitted wiremesh mixers reduce the formation of solid deposits and improve ammonia homogenization in automotive SCR systems. However, their implementation in CFD models remains a major challenge due to the complex WM geometry. It was the aim of the current study to investigate droplet WM interaction. Essential processes, such as secondary droplet generation, wall film formation, and heat exchange, were analyzed in detail and a numerical model was set up. A box with heat resisting glass was used to study urea-water solution spray impingement on a WM under a wide range of operating conditions. High speed videography was used to identify the impingement regimes. Infrared thermography was applied to investigate WM cooling. In order to determine the impact of the WM on the spray characteristics, the droplet spectrum was measured both upstream and downstream of the WM using the laser diffraction method.
X