Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage

2017-03-28
2017-01-1086
For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
Technical Paper

Exhaust Valve Thermal Management and Robust Design Using Combustion and 3D Conjugate Heat Transfer Simulation with 6-Sigma Methodology

2006-04-03
2006-01-0889
Meeting increasingly stringent targets for vehicle performance, economy and emissions requires a deep understanding of the overall IC engine system behavior and the ability to optimize it considering all control and noise factors and their variations. The tradeoffs in exhaust gas temperature, exhaust valve temperature, engine performance, economy and emissions demand a combination of capable CAE analytical tools and a methodology capable of leading the design to a reliable and robust solution. This paper presents a newly developed methodology that uses a Ford in-house quasi-dimensional combustion model called GESIM (General Engine Simulation Program) and a 3D conjugate heat transfer (CHT) model to predict crank angle resolved exhaust gas temperatures and cycle average valve temperatures in a 6-Sigma context, which considers a wide range of engine factors and their variations, to determine a feasible robust design solution.
X