Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Ground Impact Analysis of the Battery Pack Based on the Whole Vehicle Model

2023-04-11
2023-01-0778
The battery pack is usually mounted at the bottom of electric vehicles and the clearance between the battery pack and the ground is usually small, which makes the battery pack easily contact the uneven road and hard obstacles on the ground. The hard obstacles on the ground can hit and penetrate into the battery pack and the battery pack may cause fire accidents or failures due to the ground impact. To analyze the ground impact process of the battery pack from the view of the whole vehicle level, the coupling model of multi-rigid bodies and finite element model is built for the whole vehicle. Then the ground impact experiments with a production car are made and the simulation results and experiment results are compared. The result shows that the simulation results match well with the experiment results and the coupling model of the whole vehicle model is demonstrated.
Technical Paper

Crashworthiness Optimization of Hydraulic Excavator Cab Roof Rail and Safety Prediction: Finite Element Analysis and Experimental Validation

2021-04-06
2021-01-0925
Off-road trucks, tractors and earth-moving machines are at high risk of accidents involving falling objects or rollovers. Therefore, these machines need proper protective structures to protect operators. This study investigates the crashworthiness optimization of a hydraulic excavator cab roof rail based on an improved bi-directional evolutionary structural optimization (BESO) method considering two different load cases (a lateral quasi-static load and an impact load from the top of cab, respectively). In the crashworthiness optimization problem, a weighted summation of external works done by the two different load cases is treated as the objective function while the volume of design domain is treated as the constraint. A mutative weight scheme is proposed to stabilize the optimization and balance the two load cases. Finite element (FE) model is established and two prototypes are fabricated based on the optimal design.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
X